首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Efficient Rotation-Scaling-Translation Parameter Estimation Based on the Fractal Image Model
【24h】

Efficient Rotation-Scaling-Translation Parameter Estimation Based on the Fractal Image Model

机译:基于分形图像模型的高效旋转缩放平移参数估计

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with area-based subpixel image registration under the rotation-isometric scaling-translation transformation hypothesis. Our approach is based on parametrical modeling of geometrically transformed textural image fragments and maximum-likelihood estimation of the transformation vector between them. Due to the parametrical approach based on the fractional Brownian motion modeling of the local fragments' texture, the proposed estimator (ML stands for “maximum likelihood” and fBm stands for “fractal Brownian motion”) has the ability to better adapt to real image texture content compared with other methods relying on universal similarity measures such as mutual information or normalized correlation. The main benefits are observed when assumptions underlying the fBm model are fully satisfied, e.g., for isotropic normally distributed textures with stationary increments. Experiments on both simulated and real images and for high and weak correlations between registered images show that the estimator offers significant improvement compared with other state-of-the-art methods. It reduces translation vector, rotation angle, and scaling factor estimation errors by a factor of about 1.75–2, and it decreases the probability of false match by up to five times. In addition, an accurate confidence interval for estimates can be obtained from the Cramér–Rao lower bound on rotation-scaling-translation parameter estimation error. This bound depends on texture roughness, noise level in reference and template images, correlation between these images, and geometrical transformation parameters.
机译:本文讨论了旋转等距缩放和平移变换假设下基于区域的亚像素图像配准。我们的方法基于几何变换的纹理图像片段的参数化建模以及它们之间的变换向量的最大似然估计。由于基于局部片段纹理的分数布朗运动建模的参数化方法,所提出的估计器(ML代表“最大似然”,fBm代表“分数布朗运动”)具有更好地适应真实图像纹理的能力内容与其他依靠通用相似性度量(例如互信息或标准化相关性)的方法进行比较。当完全满足fBm模型的假设时,例如对于具有固定增量的各向同性正态分布纹理时,可以观察到主要好处。对模拟图像和真实图像以及配准图像之间的高弱相关性进行的实验表明,与其他最新方法相比,该估计器具有明显的改进。它将平移矢量,旋转角度和缩放因子估计误差减少了约1.75–2,并且将错误匹配的可能性降低了五倍。此外,可以从旋转缩放平移参数估计误差的Cramér-Rao下界获得估计的准确置信区间。该界限取决于纹理粗糙度,参考和模板图像中的噪声水平,这些图像之间的相关性以及几何变换参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号