首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >OSSIM: An Object-Based Multiview Stereo Algorithm Using SSIM Index Matching Cost
【24h】

OSSIM: An Object-Based Multiview Stereo Algorithm Using SSIM Index Matching Cost

机译:OSSIM:使用SSIM索引匹配成本的基于对象的多视图立体算法

获取原文
获取原文并翻译 | 示例

摘要

Multiview stereo (MVS) is a crucial process in image-based automatic 3-D reconstruction and mapping applications. In a dense matching process, the matching cost is generally computed between image pairs, making the efficiency low due to the large number of stereo pairs. This paper presents a novel object-based MVS algorithm using structural similarity (SSIM) index matching cost in a coarse-to-fine workflow. As far as we know, this is the first time SSIM index is introduced to calculate the matching cost of MVS applications. In contrast to classical stereo methods, the proposed object-based structural similarity (OSSIM) method computes only a depth map for each image. Thus, the efficiency can be greatly improved when the overlap between images is large. To obtain an optimized depth map, the winner-take-all and semi-global matching strategies are implemented. Moreover, an object-based multiview consistency checking strategy is also proposed to eliminate wrong matches and perform pixelwise view selection. The proposed method was successfully applied on a close-range Fountain-P11 data set provided by EPFL and aerial data sets of Vaihingen and Zürich by the ISPRS. Experimental results demonstrate that the proposed method can deliver matches at high completeness and accuracy. For the Vaihingen data set, the correctness and completeness rate were 71.12% and 95.99% with an RMSE of 2.8 GSD. For the Foutain-P11 data set, the proposed method outperformed the other existing methods with the ratio of pixels less than 2 cm. Extensive comparison using Zürich data set shows that it can derive results comparable to the state-of-the-art software (PhotoScan, Pix4d, and Smart3D) in urban buildings areas.
机译:在基于图像的自动3D重建和制图应用程序中,多视图立体声(MVS)是至关重要的过程。在密集的匹配过程中,通常在图像对之间计算匹配成本,由于立体声对数量众多,效率降低。本文提出了一种新的基于对象的MVS算法,该算法在粗到精工作流程中使用结构相似性(SSIM)索引匹配成本。据我们所知,这是首次引入SSIM索引来计算MVS应用程序的匹配成本。与经典的立体方法相反,提出的基于对象的结构相似性(OSSIM)方法仅为每个图像计算深度图。因此,当图像之间的重叠大时,可以大大提高效率。为了获得优化的深度图,实施了赢家通吃和半全局匹配策略。此外,还提出了一种基于对象的多视图一致性检查策略,以消除错误匹配并执行逐像素视图选择。该方法已成功应用于EPFL提供的近距离Fountain-P11数据集以及ISPRS的Vaihingen和Zürich空中数据集。实验结果表明,该方法可以提供较高的完整性和准确性。对于Vaihingen数据集,正确率和完整性率分别为71.12%和95.99%,RMSE为2.8 GSD。对于Foutain-P11数据集,该方法在像素比小于2 cm的情况下优于其他现有方法。使用Zürich数据集进行的广泛比较表明,它可以得出与城市建筑区域中最先进的软件(PhotoScan,Pix4d和Smart3D)可比的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号