首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Multilayer Projective Dictionary Pair Learning and Sparse Autoencoder for PolSAR Image Classification
【24h】

Multilayer Projective Dictionary Pair Learning and Sparse Autoencoder for PolSAR Image Classification

机译:用于PolSAR图像分类的多层投影字典对学习和稀疏自动编码器。

获取原文
获取原文并翻译 | 示例

摘要

Polarimetric synthetic aperture radar (PolSAR) image classification is a vital application in remote sensing image processing. In general, PolSAR image classification is actually a high-dimensional nonlinear mapping problem. The methods based on sparse representation and deep learning have shown a great potential for PolSAR image classification. Therefore, a novel PolSAR image classification method based on multilayer projective dictionary pair learning (MDPL) and sparse auto encoder (SAE) is proposed in this paper. First, MDPL is used to extract features, and the abstract degree of the extracted features is high. Second, in order to get the nonlinear relationship between elements of feature vectors in an adaptive way, SAE is also used in this paper. Three PolSAR images are used to test the effectiveness of our method. Compared with several state-of-the-art methods, our method achieves very competitive results in PolSAR image classification.
机译:极化合成孔径雷达(PolSAR)图像分类是遥感图像处理中的重要应用。通常,PolSAR图像分类实际上是高维非线性映射问题。基于稀疏表示和深度学习的方法显示了PolSAR图像分类的巨大潜力。因此,本文提出了一种基于多层投影字典对学习(MDPL)和稀疏自动编码器(SAE)的PolSAR图像分类新方法。首先,使用MDPL提取特征,提取的特征的抽象度很高。其次,为了以自适应的方式获得特征向量元素之间的非线性关系,本文还使用了SAE。三个PolSAR图像用于测试我们方法的有效性。与几种最新方法相比,我们的方法在PolSAR图像分类中取得了非常有竞争力的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号