首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Higher Order Dynamic Conditional Random Fields Ensemble for Crop Type Classification in Radar Images
【24h】

Higher Order Dynamic Conditional Random Fields Ensemble for Crop Type Classification in Radar Images

机译:雷达图像中作物类型分类的高阶动态条件随机场集合

获取原文
获取原文并翻译 | 示例

摘要

The rising food demand requires regular agriculture land-cover updates to support food security initiatives. Agricultural areas undergo dynamic changes throughout the year, which manifest varying radar backscatter due to crop phenology. Certain crops can show similar backscatter if their phenology intersects, but vary later when their phenology differs. Hence, classification techniques based on single-date remote sensing images may not offer optimal results for crops with similar phenology. Moreover, methods that stack images within a cropping season as composite bands for classification limit discrimination to one feature space vector, which can suffer from overlapping classes. Nonetheless, phenology can aid classification of crops, because their backscatter varies with time. This paper fills this gap by introducing a crop sequence-based ensemble classification method where expert knowledge and TerraSAR-X multitemporal image-based phenological information are explored. We designed first-order and higher order dynamic conditional random fields (DCRFs) including an ensemble technique. The DCRF models have a duplicated structure of temporally connected CRFs, which encode image-based phenology and expert-based phenology knowledge during classification. On the other hand, our ensemble generates an optimal map based on class posterior probabilities estimated by DCRFs. These techniques improved crop delineation at each epoch, with higher order DCRFs (HDCRFs) giving the best accuracy. The ensemble method was evaluated against the conventional technique of stacking multitemporal images as composite bands for classification using maximum likelihood classifier (MLC) and CRFs. It surpassed MLC and CRFs based on class posterior probabilities estimated by both first-order DCRFs and HDCRFs.
机译:不断增长的粮食需求需要定期更新农业土地覆盖面,以支持粮食安全举措。农业区域一年四季都在发生动态变化,由于作物物候原因,这表明雷达后向散射有所变化。如果某些作物的物候相交,则它们可能会显示相似的反向散射,但是当它们的物候不同时,它们便会发生变化。因此,基于单次遥感影像的分类技术可能无法为物候相似的农作物提供最佳结果。此外,将作物季节内的图像堆叠为用于分类的复合带的方法将辨别限制于一个特征空间矢量,该特征空间矢量可能会遭受重叠类的困扰。但是,物候学可以帮助农作物分类,因为它们的反向散射随时间变化。本文通过引入基于农作物序列的集合分类方法来填补这一空白,其中探索了专家知识和基于TerraSAR-X多时相图像的物候信息。我们设计了包含集成技术的一阶和高阶动态条件随机字段(DCRF)。 DCRF模型具有时间连接的CRF的重复结构,该CRF在分类过程中对基于图像的物候和基于专家的物候知识进行编码。另一方面,我们的合奏基于由DCRF估计的类后验概率生成最佳映射。这些技术改进了每个时期的作物轮廓,高阶DCRF(HDCRF)提供了最佳精度。针对使用多似然分类器(MLC)和CRF将多时相图像堆叠为复合带进行分类的常规技术,对集成方法进行了评估。根据一阶DCRF和HDCRF估计的类后验概率,它超过了MLC和CRF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号