首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >An Internal Crown Geometric Model for Conifer Species Classification With High-Density LiDAR Data
【24h】

An Internal Crown Geometric Model for Conifer Species Classification With High-Density LiDAR Data

机译:具有高密度LiDAR数据的针叶树种内部冠状几何模型

获取原文
获取原文并翻译 | 示例

摘要

The knowledge of the tree species is a crucial information that governs the success of precision forest management practice. High-density small footprint multireturn airborne light detection and ranging (LiDAR) scanning can collect a huge amount of point samples containing structural details of the forest vertical profile, which can reveal important structural information of the forest components. LiDAR data have been successfully used to distinguish between coniferous and deciduous/broadleaved tree species. However, species classification within a class (e.g., the conifer class) using LiDAR data is a challenging problem when considering the tree external crown characteristics only. This paper presents a novel method for conifer species classification based on the use of geometric features describing both the internal and external structures of the crown. The internal crown geometric features (IGFs) are defined based on a novel internal branch structure model, which uses 3-D region growing and principal component analysis to delineate the branch structure of a conifer tree accurately. IGFs are used together with external crown geometric features to perform conifer species classification. Three different support vector machines have been considered for classification performance evaluation. The experimental analysis conducted on high-density LiDAR data acquired over a portion of the Trentino region in Italy proves the effectiveness of the proposed method.
机译:树种的知识是控制精确森林管理实践成功的关键信息。高密度小足迹多返回机载光检测和测距(LiDAR)扫描可以收集大量点样本,这些点样本包含森林垂直剖面的结构细节,可以揭示森林组件的重要结构信息。 LiDAR数据已成功用于区分针叶树和落叶/阔叶树种。然而,当仅考虑树的外部树冠特征时,使用LiDAR数据的类别(例如,针叶树类别)内的物种分类是具有挑战性的问题。本文介绍了一种基于针叶树种内部和外部结构的几何特征分类的针叶树种分类新方法。基于新的内部分支结构模型定义内部树冠几何特征(IGF),该模型使用3-D区域生长和主成分分析来准确描绘针叶树的分支结构。 IGF与外部树冠的几何特征一起使用来进行针叶树种的分类。已考虑使用三种不同的支持向量机进行分类性能评估。对在意大利特伦蒂诺州部分地区获得的高密度LiDAR数据进行的实验分析证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号