首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Robust Infrared Maritime Target Detection Based on Visual Attention and Spatiotemporal Filtering
【24h】

Robust Infrared Maritime Target Detection Based on Visual Attention and Spatiotemporal Filtering

机译:基于视觉注意力和时空滤波的鲁棒红外海上目标检测

获取原文
获取原文并翻译 | 示例

摘要

It has always been a great challenge to efficiently detect small infrared targets from complex image backgrounds without any prior knowledge. This is especially true when both strong and weak targets appear in the same image or when the weak targets come up on image borders. The main contribution of this paper is to design a robust infrared maritime target detection method, in which a visual attention and pipeline-filtering model is proposed by integrating a revised visual attention model (VAM) and the antivibration pipeline-filtering algorithm. The revised VAM, a single-frame target detection strategy, will first compute a saliency map (SM) from a specific modality, which is automatically selected according to image background smoothness. Then, an automatic strategy for extracting suspected targets from an SM is also proposed here, which highlights targets and suppresses background clutters in SMs through local saliency singularity evaluation. Moreover, contrary to the original VAM, we adopt border saliency preservation in center-surround difference so that robust detection can be guaranteed for targets on image borders. Finally, to eliminate the interference of sea glints and confirm real targets, we adopt the antivibration pipeline-filtering algorithm, a multiframe-based clutter removal method. Compared with the original VAM and two other existing target detection algorithms, experimental results have proven that our strategy can detect infrared maritime targets much better under different environmental conditions. This research can significantly improve the success rate and efficiency of searching maritime targets in different weathers using infrared imager, especially in heavy sea fog and strong ocean waves.
机译:在没有任何先验知识的情况下,从复杂图像背景中有效地检测出小的红外目标一直是一个巨大的挑战。当强目标和弱目标都出现在同一图像中或弱目标出现在图像边界上时,尤其如此。本文的主要贡献是设计了一种鲁棒的红外海上目标检测方法,该方法通过将修订后的视觉注意模型(VAM)与抗振动管道过滤算法相结合,提出了视觉注意和管道过滤模型。修订后的VAM是一种单帧目标检测策略,它将首先根据特定模态计算显着性图(SM),然后根据图像背景的平滑度自动选择该显着图。然后,在此还提出了一种从SM中提取可疑目标的自动策略,该策略可突出目标并通过局部显着性奇异性评估来抑制SM中的背景杂波。此外,与原始的VAM相反,我们在中心周围差异中采用了边界显着性保留,从而可以确保对图像边界上的目标进行鲁棒的检测。最后,为消除海闪干扰并确定真实目标,我们采用了基于多帧杂波消除方法的抗振动管道滤波算法。与原始的VAM和其他两个现有的目标检测算法相比,实验结果证明了我们的策略可以在不同的环境条件下更好地检测红外海上目标。这项研究可以显着提高使用红外热像仪在不同天气下搜索海上目标的成功率和效率,特别是在大雾和强海浪中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号