首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks
【24h】

Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks

机译:基于卷积神经网络的遥感影像精确目标定位

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we focus on tackling the problem of automatic accurate localization of detected objects in high-resolution remote sensing images. The two major problems for object localization in remote sensing images caused by the complex context information such images contain are achieving generalizability of the features used to describe objects and achieving accurate object locations. To address these challenges, we propose a new object localization framework, which can be divided into three processes: region proposal, classification, and accurate object localization process. First, a region proposal method is used to generate candidate regions with the aim of detecting all objects of interest within these images. Then, generic image features from a local image corresponding to each region proposal are extracted by a combination model of 2-D reduction convolutional neural networks (CNNs). Finally, to improve the location accuracy, we propose an unsupervised score-based bounding box regression (USB-BBR) algorithm, combined with a nonmaximum suppression algorithm to optimize the bounding boxes of regions that detected as objects. Experiments show that the dimension-reduction model performs better than the retrained and fine-tuned models and the detection precision of the combined CNN model is much higher than that of any single model. Also our proposed USB-BBR algorithm can more accurately locate objects within an image. Compared with traditional features extraction methods, such as elliptic Fourier transform-based histogram of oriented gradients and local binary pattern histogram Fourier, our proposed localization framework shows robustness when dealing with different complex backgrounds.
机译:在本文中,我们专注于解决高分辨率遥感影像中被检测物体的自动精确定位问题。由这样的图像所包含的复杂的上下文信息引起的遥感图像中的对象定位的两个主要问题是实现了用于描述对象的特征的通用性以及实现了准确的对象位置。为了解决这些挑战,我们提出了一个新的对象本地化框架,该框架可以分为三个过程:区域提议,分类和精确的对象本地化过程。首先,区域提议方法用于生成候选区域,目的是检测这些图像内的所有关注对象。然后,通过二维归约卷积神经网络(CNN)的组合模型从与每个区域建议相对应的局部图像中提取通用图像特征。最后,为了提高定位精度,我们提出了一种基于分数的无监督边界框回归(USB-BBR)算法,并结合了非最大抑制算法来优化被检测为对象的区域的边界框。实验表明,降维模型的性能优于再训练和微调模型,并且组合CNN模型的检测精度远高于任何单个模型。同样,我们提出的USB-BBR算法可以更精确地定位图像中的对象。与传统的特征提取方法(如基于椭圆傅立叶变换的定向梯度直方图和局部二元模式直方图傅立叶)相比,我们提出的定位框架在处理不同复杂背景时显示出鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号