首页> 外文OA文献 >Effective Complex Airport Object Detection in Remote Sensing Images Based on Improved End-to-End Convolutional Neural Network
【2h】

Effective Complex Airport Object Detection in Remote Sensing Images Based on Improved End-to-End Convolutional Neural Network

机译:基于改进的端到端卷积神经网络的遥感图像中有效的复杂机场对象检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Airport objects are hotspots in the field of image object detection because of their specific features and value for applications. In this study, we developed a complex object detection method based on improved Faster R-CNN to achieve higher detection precision to detect seven types of remote sensing image objects in airport areas under complex conditions such as different scales, different visual angles, and different backgrounds. When building the network, we used deeper basic networks and feature fusion components to extract more robust features. At the same time, we had also modified the selection of positive and negative samples to improve sample imbalance. The main improvements in the algorithm concern the anchor size generation rule, and the addition of an a priori judgment network for the network. The effectiveness of the improved algorithm was verified in experiments. Compared with the original Faster R-CNN, the improved network brings a 12.7% increase in mAP, at the detection time of 0.307s. Finally, the model with trained weights was used to test the detection of the seven types of objects in airport areas on different data sets, and comparisons were conducted with other algorithms. The experimental results showed that the method improved the average detection accuracy and had a good performance in remote sensing airport object detection tasks.
机译:由于应用程序的特定功能和值,机场对象是图像对象检测领域的热点。在这项研究中,我们开发了一种基于改进的R-CNN的复杂物体检测方法,以实现更高的检测精度,以检测在不同尺度,不同的视角和不同背景下的机场区域中的七种类型的遥感图像对象。在构建网络时,我们使用更深的基本网络和功能融合组件来提取更强大的功能。与此同时,我们还修改了阳性和阴性样本的选择,以改善样品不平衡。算法的主要改进涉及锚尺寸生成规则,以及添加网络的先验判断网络。在实验中验证了改进算法的有效性。与原始R-CNN相比,改进的网络在0.307s的检测时间内为地图增加了12.7%。最后,使用训练有素的重量模型来测试不同数据集的机场区域中七种物体的检测,并使用其他算法进行比较。实验结果表明,该方法提高了平均检测精度,在遥感机场对象检测任务中具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号