首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Modeling Gross Primary Production for Sunlit and Shaded Canopies Across an Evergreen and a Deciduous Site in Canada
【24h】

Modeling Gross Primary Production for Sunlit and Shaded Canopies Across an Evergreen and a Deciduous Site in Canada

机译:模拟加拿大常绿和落叶地带的日光遮阴棚的总初级生产

获取原文
获取原文并翻译 | 示例

摘要

Light use efficiency (LUE) models offer an effective way for regional gross primary productivity (GPP) estimation. However, LUE is not easily determined at the landscape level due to its complexity and dependence on various environmental factors. One possible strategy to avoid the requirement for assessing environmental stressors is using the photochemical reflectance index (PRI) to determine LUE via the epoxidation state of the xanthophyll cycle. Integration of such measurements into GPP models could lead to more realistic GPP estimates of landscape level. Conventional, “one-leaf” LUE models, however, seem less suitable for integration of such remote sensing observations, as optically derived estimates are dependent on the shadow fraction viewed at a given time. Here, we utilize the two-leaf LUE (TL-LUE) model to parameterize LUE from multiangle PRI observations and compare it with MOD17 approach. Significant relationships were found between LUE (LUE, LUEsun, and LUEshaded) and PRI (PRI, PRIsun, and PRIshaded) over 8- and 16-day time steps. Similarly, R2 values for the relationships between modeled GPP and observed GPP (EC derived measurements of GPP) were 0.87 (TL-LUE) and 0.81 (MOD17) at deciduous forest and 0.54 (TL-LUE) and 0.46 (MOD17) at evergreen forest for eight-day periods, as well as 0.84 (TL-LUE) and 0.74 (MOD17) at deciduous forest and 0.49 (TL-LUE) and 0.46 (MOD17) at evergreen forest for 16-day periods. Our results are relevant when planning potential future satellite missions to help constrain existing GPP models using remotely sensed data, as such observations will likely be affected by canopy shading effects at the time of observation.
机译:光利用效率(LUE)模型为区域总初级生产力(GPP)估算提供了一种有效的方法。但是,由于LUE的复杂性和对各种环境因素的依赖,因此在景观级别不容易确定。避免需要评估环境压力的一种可能策略是使用光化学反射指数(PRI)通过叶黄素循环的环氧化状态确定LUE。将这些测量结果集成到GPP模型中可以导致更实际的GPP对景观水平的估计。但是,传统的“单叶” LUE模型似乎不太适合集成此类遥感观测结果,因为光学推导的估计值取决于在给定时间观察到的阴影分数。在这里,我们利用两叶LUE(TL-LUE)模型从多角度PRI观察参数化LUE,并将其与MOD17方法进行比较。在8天和16天的时间步长中,LUE(LUE,LUEsun和LUEshaded)和PRI(PRI,PRIsun和PRIshaded)之间发现了显着的关系。同样,在落叶林中建模的GPP与观察到的GPP之间的关系的R2值是0.87(TL-LUE)和0.81(MOD17),在常绿森林中是0.54(TL-LUE)和0.46(MOD17)八天的时间,以及落叶林的0.84(TL-LUE)和0.74(MOD17),常绿森林的16天周期为0.49(TL-LUE)和0.46(MOD17)。当计划未来的潜在卫星任务,以帮助使用遥感数据约束现有GPP模型时,我们的结果是有意义的,因为此类观测可能会受到观测时的冠层阴影效应的影响。

著录项

  • 来源
  • 作者单位

    Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, School of Geographic and Oceanographic Sciences, Nanjing, China;

    Department of Geography and Environment, University of Southampton, Southampton, U.K.;

    Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, China;

    Faculty of Forest Resources Management, The University of British Columbia, Vancouver, BC, Canada;

    Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada;

    Department of Geography and Program in Planning, University of Toronto, Toronto, ON, Canada;

    Department of Microbiology and Plant Biology, Center for Spatial Analysis, The University of Oklahoma, Norman, OK, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biological system modeling; Remote sensing; Indexes; Productivity; Vegetation mapping; MODIS; Electronic mail;

    机译:生物系统建模;遥感;指标;生产力;植被图;MODIS;电子邮件;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号