首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Modified Residual Method for the Estimation of Noise in Hyperspectral Images
【24h】

Modified Residual Method for the Estimation of Noise in Hyperspectral Images

机译:改进的残差法估计高光谱图像中的噪声

获取原文
获取原文并翻译 | 示例

摘要

Many hyperspectral image processing algorithms (e.g., detection, classification, endmember extraction, and so on) are generally designed with the assumption of no spectral or spatial correlation in noise. However, previous studies have shown the presence of nonnegligible correlation between the noise samples in different spectral bands, especially between noises in adjacent bands, and that most of the well-known intrinsic dimension estimation algorithms give poor estimates in the presence of correlated noise. Thus, there is a need to tackle the specific case of spectrally correlated noise for noise estimation. We show, in this paper, that the commonly employed hyperspectral noise estimation algorithm based on regression residuals can be significantly affected by spectrally correlated noise and we suggest a modified approach that proves to be robust to noise correlation. Furthermore, the proposed method improves the noise variance estimates in comparison to the classic residual method even for the case of uncorrelated noise. Simulation results show that the estimation error is reduced at times by a factor of 5 when there is high spectral correlation in the noise. Our proposed per-pixel noise estimator requires an estimate of the noise covariance matrix, and for this, we also propose a method to estimate the noise covariance matrix. Simulation results demonstrate that the per-pixel noise estimates obtained via the use of estimated noise statistics are almost as good as those obtained via use of the true statistics.
机译:通常在假设噪声中没有频谱或空间相关性的前提下设计许多高光谱图像处理算法(例如,检测,分类,端成员提取等)。但是,以前的研究表明,在不同频谱带中的噪声样本之间,尤其是在相邻频带中的噪声之间,存在不可忽略的相关性,并且大多数众所周知的固有维数估计算法在存在相关噪声的情况下给出的估计都很差。因此,需要解决频谱相关噪声的特定情况以进行噪声估计。我们在本文中表明,基于回归残差的常用高光谱噪声估计算法可能会受到频谱相关噪声的显着影响,并且我们提出了一种经改进的方法,该方法证明对噪声相关性是鲁棒的。此外,与经典的残差方法相比,即使在不相关噪声的情况下,所提出的方法也改进了噪声方差估计。仿真结果表明,当噪声中存在高频谱相关性时,估计误差有时会减少5倍。我们提出的每像素噪声估计器需要估计噪声协方差矩阵,为此,我们还提出了一种估计噪声协方差矩阵的方法。仿真结果表明,通过使用估计的噪声统计数据获得的每个像素的噪声估计几乎与通过使用真实统计数据获得的估计效果一样好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号