首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Spatially and Temporally Weighted Regression: A Novel Method to Produce Continuous Cloud-Free Landsat Imagery
【24h】

Spatially and Temporally Weighted Regression: A Novel Method to Produce Continuous Cloud-Free Landsat Imagery

机译:时空加权回归:产生连续无云Landsat影像的新方法

获取原文
获取原文并翻译 | 示例

摘要

Due to serious cloud contamination in optical satellite images, it is hard to acquire continuous cloud-free satellite observations, which limits the potential utilization of the available images and further data extraction and analysis. Thus, information reconstruction in cloud-contaminated images and the reprocessing of continuous cloud-free images are urgently needed for global change science. Many previous studies use one cloud-free reference image or multitemporal reference images to restore a target cloud-contaminated image; however, this paper is different and has developed a novel spatially and temporally weighted regression (STWR) model for cloud removal to produce continuous cloud-free Landsat images. The proposed method makes full utilization of cloud-free information from input Landsat scenes and employs a STWR model to optimally integrate complementary information from invariant similar pixels. Moreover, a prior modification term is added to minimize the biases derived from the spatially-weighted-regression-based prediction for each reference image. The results of the experimental tests with both simulated and actual Landsat series data show the proposed STWR can yield visually and quantitatively plausible recovery results. Compared with other cloud removal methods, our method produces lower biases and more robust efficacy. This approach provides a complete framework for continuous cloud removal and has the potential to be used for other optical images and to be applied to the reprocessing of cloud-free remote sensing productions.
机译:由于光学卫星图像中严重的云污染,很难获得连续的无云卫星观测结果,这限制了可用图像的潜在利用以及进一步的数据提取和分析。因此,全球变化科学迫切需要在受云污染的图像中进行信息重建以及对连续无云图像进行重新处理。先前的许多研究都使用一个无云参考图像或多时相参考图像来恢复目标云污染的图像。但是,本文有所不同,并开发了一种新颖的时空加权回归(STWR)模型以进行云去除以生成连续的无云Landsat图像。所提出的方法充分利用了来自输入Landsat场景的无云信息,并采用STWR模型来最佳地整合来自不变相似像素的互补信息。此外,添加了先前的修改项以最小化从每个参考图像的基于空间加权回归的预测得出的偏差。利用模拟和实际Landsat系列数据进行的实验测试结果表明,所提出的STWR可以在视觉上和定量上得出合理的恢复结果。与其他除云方法相比,我们的方法产生的偏差更小,功效更强。这种方法为连续去除云提供了一个完整的框架,并且有潜力用于其他光学图像,并可以应用于无云遥感产品的再处理。

著录项

  • 来源
  • 作者单位

    State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China;

    Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, Hong Kong;

    State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, National Meteorological Information Center, Beijing Normal University, China Meteorological Administration, Beijing, Beijing, ChinaChina;

    Department of Geography, State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science, Beijing Normal University, Tsinghua University, University of Utah, Beijing, Beijing, Salt Lake City, UT, ChinaChinaUSA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Clouds; Earth; Remote sensing; Satellites; Image restoration; Optical sensors; Optical imaging;

    机译:云;地球;遥感;卫星;图像恢复;光学传感器;光学成像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号