首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Autonomous Endmember Detection via an Abundance Anomaly Guided Saliency Prior for Hyperspectral Imagery
【24h】

Autonomous Endmember Detection via an Abundance Anomaly Guided Saliency Prior for Hyperspectral Imagery

机译:自动终端终端的经过高光谱图像之前的丰富异常引导显着性检测

获取原文
获取原文并翻译 | 示例

摘要

Determining the optimal number of endmember sources, which is also called "virtual dimensionality" (VD), is a priority for hyperspectral unmixing (HU). Although the VD estimation directly affects the HU results, it is usually solved independently of the HU process. In this article, a saliency-based autonomous endmember detection (SAED) algorithm is proposed to jointly estimate the VD in the process of endmember extraction (EE). In SAED, we first demonstrate that the abundance anomaly (AA) value is an important feature of undetected endmembers since pure pixels have larger AA values than "distractors" (i.e., mixed pixels and pure pixels of detected endmembers). Then, motivated by the fact that endmembers usually gather in certain local regions (superpixels) in the scene, due to spatial correlation, a superpixel prior is introduced in SAED to distinguish endmembers from noise. Specifically, the undetected endmembers are defined as visual stimuli in the AA subspace, the EE is formulated as a salient region detection problem, and the VD is automatically determined when there are no salient objects in the AA subspace. Since the spatial-contextual information of the endmembers is exploited during the saliency analysis, the proposed method is more robust than the spectral-only methods, which was verified using both real and synthetic hyperspectral images.
机译:确定最佳的EndMember源数,也称为“虚拟维度”(VD),是Hyperspectral Unmixing(Hu)的优先级。虽然VD估计直接影响了HU的结果,但它通常独立于HU过程解决。在本文中,提出了一种基于显着的自主EndMember检测(SAED)算法,共同估计了EndMember提取(EE)过程中的VD。在SAED中,我们首先证明丰度异常(AA)值是未检测到的终点的重要特征,因为纯像素具有比“牵引器”(即检测到的终端中的混合像素和纯像素)具有较大的AA值。然后,由于由于空间相关,终端用因子通常在某些局部区域(超像素)中聚集在某些局部区域(超像素)中,因此在SAED中引入了超像素以区分终端用噪声。具体地,未检测到的终点被定义为AA子空间中的视觉刺激,EE被配制成突出区域检测问题,并且当AA子空间中没有突出对象时,自动确定VD。由于在显着性分析期间利用终端用症的空间上下文信息,所提出的方法比仅使用真实和合成的高光谱图像验证的频谱方法更鲁棒。

著录项

  • 来源
  • 作者单位

    Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan 430079 Peoples R China;

    Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan 430072 Peoples R China|Wuhan Univ Hubei Prov Engn Res Ctr Nat Resources Remote Sens Wuhan 430072 Peoples R China;

    Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan 430072 Peoples R China|Wuhan Univ Hubei Prov Engn Res Ctr Nat Resources Remote Sens Wuhan 430072 Peoples R China;

    Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan 430072 Peoples R China|Wuhan Univ Hubei Prov Engn Res Ctr Nat Resources Remote Sens Wuhan 430072 Peoples R China;

    Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan 430072 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Abundance anomaly (AA); endmember extraction (EE); hyperspectral unmixing (HU); saliency analysis; virtual dimensionality (VD);

    机译:丰度异常(AA);endmember提取(EE);高光谱解密(胡);显着分析;虚拟维度(VD);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号