首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding
【24h】

Building Change Detection in VHR SAR Images via Unsupervised Deep Transcoding

机译:通过无监督的深度转码构建VHR SAR图像中的改变检测

获取原文
获取原文并翻译 | 示例

摘要

Building change detection (CD), important for its application in urban monitoring, can be performed in near real time by comparing prechange and postchange very-highspatial-resolution (VHR) synthetic-aperture-radar (SAR) images. However, multitemporal VHR SAR images are complex as they show high spatial correlation, prone to shadows, and show an inhomogeneous signature. Spatial context needs to be taken into account to effectively detect a change in such images. Recently, convolutional-neural-network (CNN)-based transfer learning techniques have shown strong performance for CD in VHR multispectral images. However, its direct use for SAR CD is impeded by the absence of labeled SAR data and, thus, pretrained networks. To overcome this, we exploit the availability of paired unlabeled SAR and optical images to train for the suboptimal task of transcoding SAR images into optical images using a cycle-consistent generative adversarial network (CycleGAN). The CycleGAN consists of two generator networks: one for transcoding SAR images into the optical image domain and the other for projecting optical images into the SAR image domain. After unsupervised training, the generator transcoding SAR images into optical ones is used as a bitemporal deep feature extractor to extract optical-like features from bitemporal SAR images. Thus, deep change vector analysis (DCVA) and fuzzy rules can be applied to identify changed buildings (new/destroyed). We validate our method on two data sets made up of pairs of bitemporal VHR SAR images on the city of L'Aquila (Italy) and Trento (Italy).
机译:建筑变更检测(CD),对于其在城市监测中的应用重要,可以通过比较预晶和发布非常高分辨率(VHR)合成孔径 - 雷达(SAR)图像来在接近实时进行。然而,多立体VHR SAR图像是复杂的,因为它们显示出高空间相关性,容易出现阴影,并显示不均匀的签名。需要考虑空间上下文以有效地检测此类图像的变化。最近,基于卷积 - 神经网络(CNN)的转移学习技术对VHR多光谱图像中的CD表现出很强的性能。然而,通过没有标记的SAR数据,其直接用于SAR CD的直接使用,因此,预磨损的网络阻碍了。为了克服这一点,我们利用配对的未标记的SAR和光学图像的可用性,以便使用循环一致的生成对冲网络(Cyclegan)将SAR图像转换为光学图像的子优缺任务。 Cycleangan由两个生成网络:一个用于将SAR图像转换为光学图像域,另一个用于将光学图像投影到SAR图像域中。在无监督的训练之后,将SAR图像转换为光学的发电机将SAR图像用作比特仪深度特征提取器,以从比特普朗特SAR图像中提取光学样功能。因此,可以应用深变化载体分析(DCVA)和模糊规则来识别更改的建筑物(新/被销毁)。我们验证了我们在L'Aquila(意大利)和特伦托(意大利)的一对数据集上由两组数据集进行的方法组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号