首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Similarity-Based Unsupervised Deep Transfer Learning for Remote Sensing Image Retrieval
【24h】

Similarity-Based Unsupervised Deep Transfer Learning for Remote Sensing Image Retrieval

机译:遥感图像检索的相似性无监督的深度转移学习

获取原文
获取原文并翻译 | 示例

摘要

In the field of content-based remote sensing (RS) image retrieval, convolutional neural networks (CNNs) have been demonstrating overwhelming superiority among other methods in terms of performance. CNNs are basically trained in a supervised way, requiring a larger number of labeled samples. However, scarcity of labeled images is very prevalent in the RS community. Moreover, CNN-based approaches have other disadvantages such as cumbersome networks and high-dimensional features. To address these issues, we apply unsupervised transfer learning to CNN training—we transform similarity learning into deep ordinal classification with the help of several CNN experts pretrained over large-scale-labeled everyday image sets, which jointly determine image similarities and provide pseudolabels for classification. Our proposed method ends up with a brand-new lightweight model called similarity-based Siamese CNN (SBS-CNN), which can be trained from scratch with completely unlabeled RS images, and whose resulting features are compact. Furthermore, the existing CNNs are generally coupled with the cross-entropy loss, entirely ignoring the interclass semantic relationship. To overcome this shortcoming, a novel loss function called weighted Wasserstein ordinal loss is constructed to take into account the ordinal relationship among categories, thus more effectively navigating parameter updates during training. Extensive experiments have been carried out over publicly available RS data sets, and it turns out that our SBS-CNN outperforms existing CNN-based approaches.
机译:在基于内容的遥感(RS)图像检索的领域中,卷积神经网络(CNNS)一直在表明在性能方面的其他方法中的压倒优势。 CNN基本上以监督方式培训,需要更多的标记样本。然而,RS社区中标记图像的稀缺性非常普遍。此外,基于CNN的方法具有其他缺点,例如繁琐的网络和高维特征。为了解决这些问题,我们将无监督的转移学习申请CNN培训 - 我们在几个CNN专家的帮助下将相似性学习转换为深度序数分类,在大规模标记的日常图像集上覆盖的几个CNN专家,这联合确定图像相似性并为分类提供伪标签。我们所提出的方法最终有一个名为基于相似性的暹罗CNN(SBS-CNN)的全新轻量级模型,可以从划痕与完全未标记的RS图像训练,其结果是紧凑。此外,现有的CNN通常与交叉熵损失耦合,完全忽略了杂于语义关系。为了克服这种缺点,构建了一种新的损失函数,以考虑类别之间的序数关系,从而在培训期间更有效地导航参数更新。已经过广泛的RS数据集进行了广泛的实验,事实证明,我们的SBS-CNN优于现有的基于CNN的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号