首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Estimation of Surface Shortwave Radiation From Himawari-8 Satellite Data Based on a Combination of Radiative Transfer and Deep Neural Network
【24h】

Estimation of Surface Shortwave Radiation From Himawari-8 Satellite Data Based on a Combination of Radiative Transfer and Deep Neural Network

机译:基于辐射转移和深神经网络组合的Himawari-8卫星数据表面短波辐射估计

获取原文
获取原文并翻译 | 示例

摘要

In this article, we developed a hybrid method to estimate surface shortwave radiation (SSR) for the new-generation Himawari-8 geostationary satellite. This hybrid method combines the advantages of a deep neural network (DNN) with high speed and radiative transfer model (RTM) to achieve high accuracy: the RTM provides training data for the DNN under various cloud and aerosol conditions (including heavy aerosol loadings). Moreover, our hybrid method can simultaneously output the byproducts of photosynthetically active radiation (PAR), ultraviolet A (UVA), and Ultraviolet B (UVB), the direct and diffuse components at the surface, and the upward solar radiation at the top-of-atmosphere (TOA). The trained DNN was applied to the Himawari-8 satellite atmospheric products for 2016 and comprehensively validated using a total of 118 stations from four networks located in the full-disk regions of Himawari-8. The results showed an RMSE of 125.9 Wm(-2) for instantaneous SSR, 105.4 Wm(-2) for hourly SSR, 31.9 Wm(-2) for daily SSR, and respective mean bias error (MBE) scores of 8.1, 27.6, and 12.3 Wm(-2). The hybrid method developed in this study performed well, achieving high accuracy and high speed, and it is capable of providing near-real-time SSR estimates for many applied energy fields.
机译:在本文中,我们开发了一种混合方法来估算新一代Himawari-8地球静止卫星的表面短波辐射(SSR)。这种混合方法将深神经网络(DNN)的优点与高速和辐射传输模型(RTM)相结合以实现高精度:RTM为各种云和气溶胶条件下的DNN提供训练数据(包括重型气溶胶载荷)。此外,我们的混合方法可以同时输出光合作用辐射(PAR),紫外线A(UVA)和紫外线B(UVB)的副产物,在表面上的直接和漫射组件,以及顶部的向上太阳辐射-AtmoSephers(TOA)。训练有素的DNN应用于2016年的Himawari-8卫星大气产品,并使用位于Himawari-8的全磁盘区域的四个网络中共有118个电台进行全面验证。结果表明,对于每月SSR,每小时SSR,31.9Wm(-2)的瞬时SSR,105.4Wm(-2),以及8.1,27.6,和12.3 WM(-2)。在本研究中开发的混合方法进行了良好的,实现了高精度和高速,并且能够为许多应用能量领域提供近实时SSR估计。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100101 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100101 Peoples R China;

    Tsinghua Univ Dept Earth Sci Syst Beijing 10084 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100101 Peoples R China;

    Japan Aerosp Explorat Agcy Earth Observat Res Ctr Tsukuba Ibaraki 3058505 Japan;

    German Aerosp Ctr Remote Sensing Technol Inst D-82234 Wessling Germany;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100101 Peoples R China;

    China Meteorol Adm Natl Meteorol Informat Ctr Beijing 100081 Peoples R China;

    Chinese Acad Sci Aerosp Informat Res Inst Beijing 100101 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Himawari-8; radiative transfer calculation; surface solar radiation;

    机译:深入学习;Himawari-8;辐射转移计算;表面太阳辐射;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号