首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Modified Generative Adversarial Nets Integrated With Stochastic Approach for Realizing Super-Resolution Reservoir Simulation
【24h】

A Modified Generative Adversarial Nets Integrated With Stochastic Approach for Realizing Super-Resolution Reservoir Simulation

机译:一种改进的生成对抗因子集成,实现超级分辨率储层模拟的随机方法

获取原文
获取原文并翻译 | 示例

摘要

Simulations and seismic inversions exhibit good performance in reservoir modeling task for the steady performance of conventional techniques. However, they still hardly meet the high demand of petroleum exploration since the impossibility of reaching high resolution both in vertical and lateral directions. Furthermore, simulations can only provide high-resolution results near loggings, while seismic inversions usually contain band-limited problems. Therefore, we present the modified generative adversarial nets with a decoder (DeGAN) as a novel approach, which is integrated with sequential simulation to realize super-resolution reservoir simulation. Specifically, the proposed method provides a geological model with high vertical resolution and optimized by the Zeoppritz function, introducing logging and seismic data simultaneously. After resampling and warping, DeGAN can be trained by these data sets and supplies a structure to generate high-frequency parts for reconstructing a super-resolution simulation of a subsurface profile. The proposed method presents the three-flow architecture of DeGAN to balance the contributions of three neural network models and utilizes this strategy in an offshore area successfully. By introducing multiple data sets, density experiments demonstrate that this approach can provide density profile with super-resolution for revealing possible thin layers, and the frequency distribution is in accord with loggings. The positive result verifies the effectiveness of this approach for providing a super-resolution simulation to supply a solution to the problem of the band-limited profile in seismic inversion.
机译:模拟和地震反转在储层建模任务中表现出良好的性能,以实现常规技术的稳步性能。然而,由于在垂直和横向方向上达到高分辨率的不可能性,它们仍然几乎不符合石油勘探的高需求。此外,模拟只能在Loggings附近提供高分辨率结果,而地震逆转通常包含带限制的问题。因此,我们将改性的生成对冲网具有解码器(解冻)作为一种新方法,其与连续模拟集成,以实现超分辨率的储库模拟。具体地,所提出的方法提供了具有高垂直分辨率的地质模型,并由Zeoppritz函数优化,同时引入测井和地震数据。在重新采样和翘曲之后,可以通过这些数据集训练解冻并提供一种结构以产生用于重建地下轮廓的超分辨率模拟的高频部分。该方法介绍了三流架构,即开始平衡三个神经网络模型的贡献,并在近海地区成功地利用了这种策略。通过引入多个数据集,密度实验表明,该方法可以提供具有超分辨率的密度分辨率,以显示可能的薄层,频率分布符合记录。肯定结果验证了这种方法的有效性,用于提供超分辨率模拟,以提供解决地震反转中的带限流的问题的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号