首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Mixed Noise Removal in Hyperspectral Image via Low-Fibered-Rank Regularization
【24h】

Mixed Noise Removal in Hyperspectral Image via Low-Fibered-Rank Regularization

机译:通过低纤维级正则化在高光谱图像中混合噪声去除

获取原文
获取原文并翻译 | 示例

摘要

The tensor tubal rank, defined based on the tensor singular value decomposition (t-SVD), has obtained promising results in hyperspectral image (HSI) denoising. However, the framework of the t-SVD lacks flexibility for handling different correlations along different modes of HSIs, leading to suboptimal denoising performance. This article mainly makes three contributions. First, we introduce a new tensor rank named tensor fibered rank by generalizing the t-SVD to the mode- t-SVD, to achieve a more flexible and accurate HSI characterization. Since directly minimizing the fibered rank is NP-hard, we suggest a three-directional tensor nuclear norm (3DTNN) and a three-directional log-based tensor nuclear norm (3DLogTNN) as its convex and nonconvex relaxation to provide an efficient numerical solution, respectively. Second, we propose a fibered rank minimization model for HSI mixed noise removal, in which the underlying HSI is modeled as a low-fibered-rank component. Third, we develop an efficient alternating direction method of multipliers (ADMMs)-based algorithm to solve the proposed model, especially, each subproblem within ADMM is proven to have a closed-form solution, although 3DLogTNN is nonconvex. Extensive experimental results demonstrate that the proposed method has superior denoising performance, as compared with the state-of-the-art competing methods on low-rank matrix/tensor approximation and noise modeling.
机译:基于张量奇异值分解(T-SVD)定义的张量管等级已经获得了高光谱图像(HSI)去噪的有希望的结果。然而,T-SVD的框架缺乏沿着HSI的不同模式处理不同的相关性的灵活性,导致次优的去噪性能。本文主要提出三项贡献。首先,我们通过将T-SVD推广到模式T-SVD来介绍一个名为TensoR纤维级别的新张量级等级,以实现更灵活和准确的HSI表征。由于直接最小化纤维等级是NP - 硬,因此建议三个方向张量核规范(3DTNN)和基于三方向的基于浪潮核标准(3Dlogtnn),因为其凸起和非凸弛豫,以提供有效的数值解决方案,分别。其次,我们提出了一种用于HSI混合噪声拆除的纤维等级最小化模型,其中底层的HSI被建模为低纤维秩分量。第三,我们开发了一种高效的交替方向方法,乘法器(ADMMS)的算法来解决所提出的模型,尤其是ADMM中的每个子问题被证明具有封闭式解决方案,尽管3DLogtnn是非凸天的。广泛的实验结果表明,与低秩矩阵/张量近似和噪声建模的最新竞争方法相比,该方法具有卓越的去噪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号