首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Identification of Alpine Glaciers in the Central Himalayas Using Fully Polarimetric L-Band SAR Data
【24h】

Identification of Alpine Glaciers in the Central Himalayas Using Fully Polarimetric L-Band SAR Data

机译:使用全极化L频段SAR数据识别中央喜马拉雅山中的高山冰川

获取原文
获取原文并翻译 | 示例

摘要

To study the applicability of full polarimetric synthetic aperture radar (SAR) data to identify alpine glaciers in the central Himalayas, six polarimetric decomposition methods were used to obtain 20 polarimetric characteristic parameters based on the Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band SAR (PALSAR) data. Object-oriented multiscale segmentation was performed on a Landsat 8 Operational Land Imager (OLI) image prior to classification, and the vector boundaries of different types of training samples were selected from the segmented results. We performed a support vector machine (SVM)-based classification on the characteristic parameters from each polarimetric decomposition. All 20 parameters were then screened and combined according to different requirements: the degree of separability of different types of training samples and the type of scattering mechanisms. The results show that the classification accuracy of the incoherent decomposition characteristics based on the covariance matrix is the best, reaching 87, and it can exceed 91 after adding the local incidence angle to the suite of classifiers. Eventually, more than 93 accuracy was achieved using a combination of multiple polarimetric parameters, which reduced the misclassification between bare ice and rock. We also analyzed the use of controlling factors on the accuracy of alpine glacier identification and found that the polarimetric information and aspect of the glacier surface are the most important factors. The former is the main basis for identification but the latter will confuse the feature distributions of different categories and cause misclassification.
机译:为研究全偏振型合成孔径雷达(SAR)数据的适用性识别中央喜马拉雅山中的高山冰川,使用六种偏振分解方法基于先进的土地观察卫星2(ALOS-2)相控阵列获得20个偏振特性参数类型L波段SAR(PALSAR)数据。在分类之前对覆盖物8运行陆地成像器(OLI)图像进行面向对象的多尺度分割,并选择不同类型训练样品的矢量边界从分段结果中选择。我们在每个偏振分解的特征参数上执行了支持向量机(SVM)的分类。然后根据不同的要求筛选和组合所有20个参数:不同类型的训练样品的可分离性和散射机构的类型。结果表明,基于协方差矩阵的非相干分解特性的分类精度是最佳,达到的87,并且在将局部入射角与分类器套件中添加局部入射角后,它可以超过91。最终,使用多个偏振参数的组合实现了超过93个精度,这减少了裸冰和岩石之间的错误分类。我们还分析了使用控制因素对高山冰川识别的准确性,发现冰川表面的极化信息和方面是最重要的因素。前者是识别的主要基础,但后者将混淆不同类别的特征分布并导致错误分类。

著录项

  • 来源
  • 作者单位

    Nanjing Univ Sch Geog & Ocean Sci Nanjing 210023 Peoples R China|Nanjing Univ Jiangsu Prov Key Lab Geog Informat Sci & Technol Nanjing 210023 Peoples R China|Nanjing Univ Key Lab Satellite Mapping Technol & Applicat State Adm Surveying Mapping & Geoinformat China Nanjing 210023 Peoples R China|Nanjing Univ Collaborat Innovat Ctr Novel Software Technol & I Nanjing 210023 Peoples R China;

    Nanjing Univ Sch Geog & Ocean Sci Nanjing 210023 Peoples R China|Nanjing Univ Jiangsu Prov Key Lab Geog Informat Sci & Technol Nanjing 210023 Peoples R China|Nanjing Univ Key Lab Satellite Mapping Technol & Applicat State Adm Surveying Mapping & Geoinformat China Nanjing 210023 Peoples R China|Nanjing Univ Collaborat Innovat Ctr Novel Software Technol & I Nanjing 210023 Peoples R China;

    Univ Montana Dept Geophys Engn Montana Tech Butte MT 59701 USA;

    Kangwon Natl Univ Div Geol & Geophys Chunchon 24341 South Korea;

    Nanjing Univ Sch Geog & Ocean Sci Nanjing 210023 Peoples R China|Nanjing Univ Jiangsu Prov Key Lab Geog Informat Sci & Technol Nanjing 210023 Peoples R China|Nanjing Univ Key Lab Satellite Mapping Technol & Applicat State Adm Surveying Mapping & Geoinformat China Nanjing 210023 Peoples R China|Nanjing Univ Collaborat Innovat Ctr Novel Software Technol & I Nanjing 210023 Peoples R China;

    Nanjing Univ Sch Geog & Ocean Sci Nanjing 210023 Peoples R China|Nanjing Univ Jiangsu Prov Key Lab Geog Informat Sci & Technol Nanjing 210023 Peoples R China|Nanjing Univ Key Lab Satellite Mapping Technol & Applicat State Adm Surveying Mapping & Geoinformat China Nanjing 210023 Peoples R China|Nanjing Univ Collaborat Innovat Ctr Novel Software Technol & I Nanjing 210023 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Synthetic aperture radar; Radar imaging; Rough surfaces; Surface roughness; Radar polarimetry; Remote sensing; Alpine glacier; local incidence angle; object-oriented segmentation; polarimetric decomposition; support vector machine (SVM);

    机译:合成孔径雷达;雷达成像;粗糙的表面;表面粗糙度;雷达偏振物;遥感;山上冰​​川;局部发射角;面向对象分解;支持向量机(SVM);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号