首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network
【24h】

Low-Frequency Desert Noise Intelligent Suppression in Seismic Data Based on Multiscale Geometric Analysis Convolutional Neural Network

机译:基于多尺度几何分析卷积神经网络的地震数据低频沙漠噪声智能抑制

获取原文
获取原文并翻译 | 示例

摘要

Existing denoising algorithms often need to meet some premise assumptions and applicable conditions, such as the signal-to-noise ratio (SNR) cannot be too low, and the noise needs to obey a specific distribution (such as Gaussian distribution) and to satisfy some properties (such as stationarity). For the desert noise that shares the same frequency band with the effective signal and has complex characteristics (nonlinear, nonstationary, and non-Gaussian), it is difficult to find a universally applicable method. In response to this problem, a multiscale geometric analysis (MGA) convolutional neural network (CNN) is proposed in this article. One of the most important features of the CNN is that it can extract data-rich intrinsic information from the training set without relying on a priori assumption. By introducing the CNN into the MGA, a new kind of denoising method can be created, which can achieve good results even under a low SNR. This article takes the nonsubsampled contourlet transform as an example to create a denoising network named NC-CNN for high-efficiency and intelligent denoising of desert seismic data. The processing results of synthetic seismic records and field seismic records prove that NC-CNN can effectively suppress the low-frequency noise (random noise and surface wave), and the effective signal almost has no energy loss. In addition, the reconstruction ability of the missing signals is also an advantage of this method.
机译:现有的去噪算法通常需要满足一些前提的假设和适用的条件,例如信噪比(SNR)不能太低,并且噪声需要遵守特定的分布(如高斯分布)并满足一些属性(例如实体性)。对于利用有效信号共享相同频带并具有复杂特性的沙漠噪声(非线性,非间断和非高斯),很难找到一种普遍适用的方法。响应于这个问题,本文提出了多尺度几何分析(MGA)卷积神经网络(CNN)。 CNN最重要的特征之一是它可以从训练集中提取富有的内部信息,而无需依赖于先验假设。通过将CNN引入MGA,可以创建一种新的去噪方法,即使在低SNR下也可以实现良好的结果。本文将非法采样的Contourlet变换为示例,以创建名为NC-CNN的去噪网络,以实现沙漠地震数据的高效率和智能去噪。合成地震记录和场地震记录的处理结果证明了NC-CNN可以有效地抑制低频噪声(随机噪声和表面波),并且有效信号几乎没有能量损失。此外,缺失信号的重建能力也是该方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号