首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Discriminative Reconstruction Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection
【24h】

Discriminative Reconstruction Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection

机译:辨别重建受影响的高光谱异常检测产生的生成对抗网络

获取原文
获取原文并翻译 | 示例

摘要

The rich and distinguishable spectral information in hyperspectral images (HSIs) makes it possible to capture anomalous samples [i.e., anomaly detection (AD)] that deviate from background samples. However, hyperspectral anomaly detection (HAD) faces various challenges due to high dimensionality, redundant information, and unlabeled and limited samples. To address these problems, this article proposes an unsupervised discriminative reconstruction constrained generative adversarial network for HAD (HADGAN). Our solution is mainly based on the assumption that the number of normal samples is much larger than the number of abnormal ones. The key contribution of this article is to learn a discriminative background reconstruction with anomaly targets being suppressed, which produces the initial detection image (i.e., the residual image between the original image and reconstructed image) with anomaly targets being highlighted and background samples being suppressed. To accomplish this goal, first, by using an autoencoder (AE) network and an adversarial latent discriminator, the latent feature layer learns normal background distribution and AE learns a background reconstruction as much as possible. Second, consistency enhanced representation and shrink constraints are added to the latent feature layer to ensure that anomaly samples are projected to similar positions as normal samples in the latent feature layer. Third, using an adversarial image feature corrector in the input space can guarantee the reliability of the generated samples. Finally, an energy-based spatial and distance-based spectral joint anomaly detector is applied in the residual map to generate the final detection map. Experiments conducted on several data sets over different scenes demonstrate its state-of-the-art performance.
机译:高光谱图像(HSIS)中的丰富和可区分的光谱信息使得可以捕获偏离背景样本的异常样本[即异常检测(AD)]。然而,由于高维度,冗余信息和未标记和有限的样品,高光谱异常检测(具有)面临各种挑战。为解决这些问题,本文提出了无监督的歧视性重建受限于(哈根)的受影响的生成对抗网络。我们的解决方案主要基于假设正常样本的数量远远大于异常的样本。本文的主要贡献是学习具有被抑制的异常目标的鉴别性背景重建,其产生初始检测图像(即,原始图像和重建图像之间的剩余图像),其具有被突出显示的异常目标和被抑制背景样本。为了实现这一目标,首先,通过使用AutoEncoder(AE)网络和对手潜在鉴别器,潜在特征层学习正常背景分配,AE尽可能多地学习背景重建。其次,将一致性增强的表示和收缩约束添加到潜在特征层中,以确保将异常样本投射到与潜在特征层中的正常样本相似的位置。第三,在输入空间中使用对抗性图像特征校正可以保证所生成的样本的可靠性。最后,在残余地图中施加基于能量的空间和距离基谱关节异常检测器以产生最终检测图。在不同场景上进行几种数据集进行的实验展示了其最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号