首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Generalized Morphological Component Analysis for Hyperspectral Unmixing
【24h】

Generalized Morphological Component Analysis for Hyperspectral Unmixing

机译:高光谱解密的广义形态分析分析

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral unmixing (HU) is an active research topic in the remote-sensing community. It aims at modeling mixed pixels using a collection of pure constituent materials (endmembers) weighted by their corresponding fractional abundances. Among existing unmixing schemes, nonnegative matrix factorization (NMF) has drawn significant attention due to its unsupervised nature, as well as its capacity to obtain both endmembers and fractional abundances simultaneously. In this article, we present a new blind unmixing method based on the generalized morphological component analysis (GMCA) framework, in which an additional constraint is introduced into the standard NMF model to represent the sparsity and morphological diversity of the abundance maps associated with each endmember. More specifically, we take into account the fact that different ground categories in a hyperspectral scene generally exhibit various spatial distributions and morphological characteristics. As a result, when providing a specific dictionary basis for these categories, their corresponding abundance maps (referred to as sources) can be sparsely represented. In addition, due to the low correlation between different sources, their sparse representations will not share the same most significant coefficients. With this observation in mind, we can further promote source discrimination and separation in the unmixing process. Moreover, in order to obtain a stable solution of the involved optimization problem, we adopt an alternate iterative constrained algorithm with a threshold descent strategy. Our experiments, carried out on both synthetic and real hyperspectral scenes, reveal that our newly developed GMCA-based unmixing method obtains very promising results with fast convergence speed and requiring significantly less parameter tuning. This confirms the advantage of the proposed spatial morphological component approach for HU purposes.
机译:Hyperspectral Unmixing(Hu)是遥感社区中的积极研究主题。它旨在使用其相应的分数丰度加权的纯成分材料(<斜斜体> endmemers )的集合来建模混合像素。在现有的解密方案中,由于其无监督的性质以及其同时获得终端和分数丰富的能力,非负矩阵分解(NMF)具有显着的关注。在本文中,我们提出了一种基于广义形态分析(GMCA)框架的新的盲解密方法,其中将额外的约束引入标准NMF模型,以表示与每个终点相关的丰富地图的稀疏性和形态样。更具体地说,我们考虑到高光谱场景中不同地面类别的事实通常表现出各种空间分布和形态特征。结果,当为这些类别提供特定的字典基础时,它们对应的丰度映射(称为<斜体>源)可以稀疏地表示。另外,由于不同来源之间的低相关性,它们的稀疏表示不会共享相同的最重要系数。考虑到这一观察,我们可以进一步促进解密过程中的源歧视和分离。此外,为了获得所涉及的优化问题的稳定解决方案,我们采用具有阈值下降策略的替代迭代约束算法。我们的实验,在合成和真实的高光谱场景上进行,揭示了我们的新开发的基于GMCA的解密方法,以快速收敛速度获得非常有前途的结果,并且需要显着更少参数调谐。这证实了所提出的HU目的的空间形态分量方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号