首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Markov Random Fields Integrating Adaptive Interclass-Pair Penalty and Spectral Similarity for Hyperspectral Image Classification
【24h】

Markov Random Fields Integrating Adaptive Interclass-Pair Penalty and Spectral Similarity for Hyperspectral Image Classification

机译:Markov随机字段集成自适应interClass-ream惩罚和频谱相似性的高光谱图像分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel Markov random field (MRF) method integrating adaptive interclass-pair penalty (aICP(2)) and spectral similarity information (SSI) for hyperspectral image (HSI) classification. aICP(2) structurally combines K(K - 1)/2 (K is the number of classes) classical "Potts model" with K(K - 1)/2 interaction coefficients. aICP(2) tries a new way to solve the key problems, insufficient correction within homogeneous regions, and over-smoothness at class boundaries, in MRF-based HSI classification. It is assumed that different class pairs should be assigned with various degrees of penalties in MRF smoothness process, according to pairwise class separability and spatial class confusion in raw classification map. The Fisher ratio is modified to measure pairwise class separability with a training set. And, gray level co-occurrence matrix is used to measure spatial class confusion degree. Then, aICP(2) is constructed by combining Fisher ratio and GCLM. aICP(2) applies larger penalty on class pairs that confuse with each other seriously to provide sufficient smoothness, and vice versa. In addition, to protect class edges and details, SSI is introduced to make the penalty of related neighboring pixels small. aICP(2)ssi denotes the integration of aICP(2) and SSI. The further improved method is both interclass-pair and interpixel adaptive in spatial term. A graph-cut-based alpha-beta-swap method is introduced to optimize the proposed energy function. The experimental results on real HSI data indicate that the proposed method outperforms compared MRF-based and other spectral-spatial approaches in terms of classification accuracies and region uniformity.
机译:本文提出了一种新颖的马尔可夫随机场(MRF)方法,其集成自适应interCalass-ream惩罚(AICP(2))和超光图像(HSI)分类的光谱相似度信息(SSI)。 AICP(2)在结构上结合K(k - 1)/ 2(k是类别)经典“potts模型”,具有k(k - 1)/ 2个交互系数。 AICP(2)试图解决关键问题的新​​方法,在基于MRF的HSI分类中,在基于MRF的HSI分类中,在均匀区域内的均匀区域内的校正不足,以及在阶级边界的过度平滑。假设应根据RAW分类图中的成对类别可分离处理和空间类混淆,在MRF平滑度过程中分配不同的类对。 Fisher比率被修改为使用训练集测量成对类别可分性。而且,灰度共发生矩阵用于测量空间类混淆程度。然后,通过组合Fisher比和GCLM来构建AICP(2)。 AICP(2)在课程对上应用较大的惩罚,这对彼此感到严重混淆,提供足够的平滑度,反之亦然。此外,为了保护类边缘和细节,介绍了SSI,以使相关的相邻像素变小。 AICP(2)SSI表示AICP(2)和SSI的集成。进一步的改进方法是在空间术语中的嵌入和互联网上的适应性。引入了基于图形的基于α-Beta-Swap方法,以优化所提出的能量功能。实验结果对实际HSI数据表示提出的方法优于基于MRF的基于MRF和其他光谱 - 空间方法,在分类精度和区域均匀性方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号