首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Wind Speed Estimation Using Acoustic Underwater Glider in a Near-Shore Marine Environment
【24h】

Wind Speed Estimation Using Acoustic Underwater Glider in a Near-Shore Marine Environment

机译:近岸海洋环境中声学水下滑翔机的风速估算

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the use of an acoustic glider to perform acoustical meteorology. This discipline consists of analyzing ocean ambient noise to infer above-surface meteorological conditions. The paper focuses on wind speed estimation, in a near-shore marine environment. In such a shallow water context, the ambient noise field is complex, with site-dependent factors and a variety of nonweather concurrent acoustic sources. A conversion relationship between sound pressure level and wind speed is proposed, taking the form of an outlier-robust nonlinear regression model learned with in situ data. This method is successfully applied to experimental data collected in Massachusetts Bay (MA, USA) during four glider surveys. An average error in wind speed estimation of 1.3 m . s(-1) (i.e., average relative error of 14%) over wind speed values up to 17 m . s(-1) is reported with this method, which outperformed results obtained with relationships from the literature. Quantitative results are also detailed on the dependence of wind speed error estimation on the environment characteristics, and on the classification performance of observations contaminated by acoustic sources other than wind. Passive acoustic-based weather systems are a promising solution to provide long-term in situ weather data with fine time and spatial resolutions. These data are crucial for satellite calibration and assimilation in meteorological models. From a broader perspective, this paper is the first step toward an operationalization of acoustic weather systems and their onboard embedding in underwater monitoring platforms such as gliders.
机译:本文调查了声学滑翔机进行声学气象的使用。该学科包括分析海洋环境噪声以推断出上表面气象条件。本文侧重于风速估计,在近岸海洋环境中。在如此浅水背景中,环境噪声场是复杂的,具有现场依赖性因素和各种非天气并发声学来源。提出了声压级和风速之间的转换关系,采用原位数据学习的异常鲁棒非线性回归模型的形式。该方法成功应用于四个滑翔机调查期间马萨诸塞州湾(MA,USA)收集的实验数据。风速估计的平均误差为1.3米。 S(即,平均相对误差为14%),风速值高达17米。通过这种方法报道了S(-1),其与文献中的关系获得的结果表现出来。在风速误差估计对环境特征的依赖性以及由风中的声源以外的声源污染的观察分类性能的依赖性,也详细说明了定量结果。被动声学的天气系统是一个有前途的解决方案,可以使用精细时间和空间分辨率提供长期的天气数据。这些数据对于气象模型中的卫星校准和同化是至关重要的。从更广泛的角度来看,本文是朝着海底监测平台等声学天气系统运作的第一步,如滑翔机。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号