首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Remote Sensor Design for Visual Recognition With Convolutional Neural Networks
【24h】

Remote Sensor Design for Visual Recognition With Convolutional Neural Networks

机译:卷积神经网络用于视觉识别的远程传感器设计

获取原文
获取原文并翻译 | 示例

摘要

While deep learning technologies for computer vision have developed rapidly since 2012, modeling of remote sensing systems has remained focused around human vision. In particular, remote sensing systems are usually constructed to optimize sensing cost-quality tradeoffs with respect to human image interpretability. While some recent studies have explored remote sensing system design as a function of simple computer vision algorithm performance, there has been little work relating this design to the state of the art in computer vision: deep learning with convolutional neural networks. We develop experimental systems to conduct this analysis, showing results with modern deep learning algorithms and recent overhead image data. Our results are compared to standard image quality measurements based on human visual perception, and we conclude not only that machine and human interpretability differ significantly but also that computer vision performance is largely self-consistent across a range of disparate conditions. This paper is presented as a cornerstone for a new generation of sensor design systems that focus on computer algorithm performance instead of human visual perception.
机译:自2012年以来,用于计算机视觉的深度学习技术发展迅速,但遥感系统的建模仍围绕人类视觉。特别地,遥感系统通常被构造成相对于人类图像可解释性来优化感测成本-质量的权衡。尽管最近的一些研究已将遥感系统设计作为简单计算机视觉算法性能的函数进行了探索,但很少有人将这种设计与计算机视觉的最新技术相关联:使用卷积神经网络进行深度学习。我们开发了实验系统来进行此分析,并使用现代深度学习算法和最新的开销图像数据显示结果。我们的结果与基于人类视觉感知的标准图像质量测量结果进行了比较,我们不仅得出结论,机器和人类的可解释性显着不同,而且在各种不同条件下,计算机视觉性能在很大程度上是自洽的。本文是新一代传感器设计系统的基石,该系统专注于计算机算法性能而非人类视觉感知。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号