首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Contrastive-Regulated CNN in the Complex Domain: A Method to Learn Physical Scattering Signatures From Flexible PolSAR Images
【24h】

Contrastive-Regulated CNN in the Complex Domain: A Method to Learn Physical Scattering Signatures From Flexible PolSAR Images

机译:复杂域中受对比度调节的CNN:一种从灵活的PolSAR图像中学习物理散射签名的方法

获取原文
获取原文并翻译 | 示例

摘要

Single- and dual-polarimetric synthetic aperture radar (SAR) images provide very limited capabilities to interpret physical radar signatures. For generality and simplicity, we call single-polarimetric, dual-polarimetric, and fully polarimetric SAR (PolSAR) images flexible PolSAR images. In order to sufficiently extract physical scattering signatures from this kind of data and explore the potentials of different polarization modes on this task, this paper proposes a contrastive-regulated convolutional neural network (CNN) in the complex domain, attempting to learn a physically interpretable deep learning model directly from the original backscattered data. To achieve a better deep model containing physically interpretable parameters, the objective cost is compared to and selected from several commonly used loss functions in the complex form. The required ground-truth labels are generated automatically according to Cloude and Pottiers H-alpha division plane, which significantly reduces intensive labor cost and transfers this method to an unsupervised learning mechanism. The boundaries between different scattering signatures, however, sometimes show an erroneous separation. With the aim of aggregating intra-class instances and alienating inter-class instances, meanwhile, a complex-valued contrastive regularization term is computed mathematically and is added to the objective cost by a tradeoff factor. Moreover, data augmentation is applied to relieve the side effects caused by data imbalance. Finally, we performed experiments on German Aerospace Centers (DLR)s L-band, high-resolution (HR), and airborne F-SAR data. Our results demonstrate the possibility of extracting physical scattering signatures from flexible PolSAR images. Physically interpretable potentials of SAR images with different polarization modes are analyzed, and we conclude with physical signature identification.
机译:单极化和双极化合成孔径雷达(SAR)图像提供的解释物理雷达信号的能力非常有限。为了通用和简单起见,我们将单极化,双极化和全极化SAR(PolSAR)图像称为柔性PolSAR图像。为了从此类数据中充分提取物理散射特征并探索不同极化模式在此任务上的潜力,本文提出了一种在复杂域中的对比调节卷积神经网络(CNN),试图学习一种物理上可解释的深度直接从原始反向散射数据中学习模型。为了获得更好的包含物理可解释参数的深层模型,将目标成本与几种复杂形式的常用损失函数进行比较并从中选择。所需的地面标签是根据Cloude和Pottiers H-alpha分割平面自动生成的,这大大降低了密集的人工成本,并将此方法转移到无监督的学习机制中。但是,不同散射特征之间的边界有时会显示错误的分隔。为了聚集类内实例并疏远类间实例,同时,数学上计算了一个复数值的对比正则化项,并通过权衡因子将其添加到目标成本中。而且,应用数据增强来减轻由数据不平衡引起的副作用。最后,我们对德国航空航天中心(DLR)的L波段,高分辨率(HR)和机载F-SAR数据进行了实验。我们的结果证明了从灵活的PolSAR图像中提取物理散射特征的可能性。分析了具有不同偏振模式的SAR图像的物理可解释潜力,并以物理特征识别为结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号