首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Technical Framework for Shallow-Water Bathymetry With High Reliability and No Missing Data Based on Time-Series Sentinel-2 Images
【24h】

Technical Framework for Shallow-Water Bathymetry With High Reliability and No Missing Data Based on Time-Series Sentinel-2 Images

机译:基于时间序列Sentinel-2图像的高可靠性,无遗漏浅水测深技术框架

获取原文
获取原文并翻译 | 示例

摘要

Shallow-water bathymetry based on multispectral satellite imagery (MSI) is an important technology for depth measurement, but it is difficult to obtain a bathymetric map with high reliability and no missing data because of the ubiquitous image noise. Here, we propose a time-series-based bathymetry framework (TSBF). First, a pixel-level time series is constructed using remote sensing images collected at multiple points in time. Then, a new time-domain denoising method, the maximum outlier removal method, is used to create an optimal image from this time series. Finally, bathymetric inversion is performed using this optimal image to obtain a bathymetric map. Anda Reef and northeastern Jiuzhang Atoll, which have complex noise features, were selected as test cases to validate the proposed framework. Results show that the proposed TSBF can obtain bathymetric maps with high accuracy, reliability, and no missing data, outperforming the conventional bathymetry framework based on a single image.
机译:基于多光谱卫星图像(MSI)的浅水测深法是深度测量的一项重要技术,但是由于图像噪声无处不在,因此很难获得具有高可靠性且没有数据丢失的测深图。在这里,我们提出了一个基于时间序列的测深框架(TSBF)。首先,使用在多个时间点收集的遥感图像构建像素级时间序列。然后,使用新的时域降噪方法(最大离群值去除法)从该时间序列创建最佳图像。最后,使用该最佳图像进行测深反演以获得测深图。选择具有复杂噪声特征的安达礁和东北九丈环礁作为测试案例,以验证所提出的框架。结果表明,所提出的TSBF能够获得高精度,高可靠性,没有数据丢失的测深图,优于传统的基于单个图像的测深框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号