首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >An Optimized Choice of UCPML to Truncate Lattices With Rotated Staggered Grid Scheme for Ground Penetrating Radar Simulation
【24h】

An Optimized Choice of UCPML to Truncate Lattices With Rotated Staggered Grid Scheme for Ground Penetrating Radar Simulation

机译:UCPML的交错网格旋转交错网格截断格子的优化选择。

获取原文
获取原文并翻译 | 示例

摘要

Efficient and accurate simulation of ground penetrating radar (GPR) in the open region helps immensely in both grasping the features of echoes and facilitating the interpretation of real GPR data. Due to the limitation of the computer model, however, the strong artificial boundary reflections, especially the low-frequency propagating waves encountered at the late stage of simulation greatly affect the simulation accuracy of GPR. This paper presents an innovative optimized unsplit-field convolutional perfectly matched layer (UCPML) based on rotated staggered grid (RSG) scheme to truncate the finite-difference time-domain (FDTD) lattices. Rather than obey the sharp variation based on an ${m}$ th-order polynomial, the optimized approach employs a novel optimized term and an adjustment factor to seek a gentle variation on optimal constitutive coefficients. This guarantees that the determination of optimal constitutive coefficients can be less influenced by the order of polynomial and especially, to improve the absorptive performance on low-frequency propagating waves. The calculating efficiency and accuracy of the RSG-FDTD scheme, as well as the absorbing performance of the optimized UCPML, are verified by two numerical examples. In particular, the analysis of the amplitude-frequency features of low-frequency clutters at steady state of the electromagnetic (EM) field and the corresponding global reflection error in the timefrequency domain is also presented.
机译:在开放区域中对地面穿透雷达(GPR)进行高效,准确的仿真,不仅有助于掌握回波的特征,而且有助于解释真实的GPR数据。但是,由于计算机模型的局限性,强烈的人工边界反射,特别是在仿真后期遇到的低频传播波,极大地影响了GPR的仿真精度。本文提出了一种创新的,基于旋转交错网格(RSG)方案的优化的非分裂场卷积完美匹配层(UCPML),以截断有限差分时域(FDTD)网格。优化的方法不是服从基于$ {m} $阶多项式的急剧变化,而是采用新颖的优化项和调整因子来寻求最优本构系数的平缓变化。这就保证了最佳本构系数的确定受多项式阶次的影响较小,特别是提高了对低频传播波的吸收性能。通过两个数值示例验证了RSG-FDTD方案的计算效率和准确性以及优化的UCPML的吸收性能。特别地,还分析了在电磁场(EM)稳定状态下的低频杂波的幅频特性以及时频域中相应的全局反射误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号