首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Scene Context-Driven Vehicle Detection in High-Resolution Aerial Images
【24h】

Scene Context-Driven Vehicle Detection in High-Resolution Aerial Images

机译:高分辨率航空影像中的场景上下文驱动车辆检测

获取原文
获取原文并翻译 | 示例

摘要

As the spatial resolution of remote sensing images is improving gradually, it is feasible to realize "scene-object" collaborative image interpretation. Unfortunately, this idea is not fully utilized in vehicle detection from high-resolution aerial images, and most of the existing methods may be promoted by considering the variability of vehicle spatial distribution in different image scenes and treating vehicle detection tasks scene-specific. With this motivation, a scene context-driven vehicle detection method is proposed in this paper. At first, we perform scene classification using the deep learning method and, then, detect vehicles in roads and parking lots separately through different vehicle detectors. Afterward, we further optimize the detection results using different postprocessing rules according to different scene types. Experimental results show that the proposed approach outperforms the state-of-the-art algorithms in terms of higher detection accuracy rate and lower false alarm rate.
机译:随着遥感图像空间分辨率的逐步提高,实现“场景—物体”协同图像解释是可行的。不幸的是,这种想法并未在从高分辨率航空图像进行的车辆检测中得到充分利用,并且可以通过考虑不同图像场景中车辆空间分布的可变性并视具体场景处理车辆检测任务来促进大多数现有方法。以此为动力,提出了一种场景上下文驱动的车辆检测方法。首先,我们使用深度学习方法执行场景分类,然后通过不同的车辆检测器分别检测道路和停车场中的车辆。之后,根据场景类型,使用不同的后处理规则进一步优化检测结果。实验结果表明,该方法在较高的检测准确率和较低的误报率方面优于最新的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号