首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Irregularly Sampled Seismic Data Reconstruction Using Multiscale Multidirectional Adaptive Prediction-Error Filter
【24h】

Irregularly Sampled Seismic Data Reconstruction Using Multiscale Multidirectional Adaptive Prediction-Error Filter

机译:多尺度多方向自适应预测误差滤波器的不规则采样地震数据重构

获取原文
获取原文并翻译 | 示例

摘要

The interpolation based on prediction-error filter (PEF) is one of the most effective approaches recently proposed for seismic data reconstruction. However, the number of effective regression equations for estimating the filter coefficients will be much less when missing many seismic traces, which makes the estimated filter coefficients inaccurate or even impossible to be estimated. To improve the accuracy of filter coefficients, in this paper, we design a multiscale and multidirectional PEF, in which the number of effective regression equations can be increased much more, and use it to seismic data reconstruction. First, we estimate the adaptive different directional PEFs using the known data in different scales. The known data can be regularly sampled with randomly or regularly missing, or even both of them. Then, we interpolate missing seismic traces using estimated PEF and the sparse known traces. The regularization in least-squares inversion controls the adaptivity of multiscale multidirectional PEF. The use of more effective regression equations in inversion makes the filter coefficients more accurate. In addition, the multiscale filter can conveniently deal with the case of the simultaneous existence of randomly and regularly missing, while the conventional methods have to be treated separately for randomly and regularly missing. The applicability and effectiveness of the proposed method are examined by synthetic and field data examples.
机译:基于预测误差滤波器(PEF)的插值是最近提出的用于地震数据重建的最有效方法之一。然而,当缺少许多地震迹线时,用于估计滤波器系数的有效回归方程的数量将少得多,这使得估计的滤波器系数不准确甚至无法被估计。为了提高滤波器系数的精度,本文设计了一种多尺度,多方向的PEF,其中可以进一步增加有效回归方程的数量,并将其用于地震数据重建。首先,我们使用已知的数据以不同的比例来估计自适应的不同方向的PEF。可对已知数据进行定期采样,随机或定期丢失,甚至两者均可。然后,我们使用估计的PEF和稀疏的已知迹线对缺失的地震迹线进行插值。最小二乘正则化反演控制多尺度多向PEF的适应性。在反演中使用更有效的回归方程可以使滤波器系数更加准确。另外,多尺度滤波器可以方便地处理随机和规则丢失同时存在的情况,而常规方法必须针对随机和规则丢失分别进行处理。通过综合和现场数据实例验证了该方法的适用性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号