首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Tensorized Principal Component Alignment: A Unified Framework for Multimodal High-Resolution Images Classification
【24h】

Tensorized Principal Component Alignment: A Unified Framework for Multimodal High-Resolution Images Classification

机译:张量化的主成分对齐:多模式高分辨率图像分类的统一框架

获取原文
获取原文并翻译 | 示例

摘要

High-resolution (HR) remote sensing (RS) imaging opens the door to very accurate geometrical analysis for objects. However, it is difficult to simultaneous use massive HR RS images in practical applications, because these HR images are often collected in different multimodal conditions (multisource, multiarea, multitemporal, multiresolution, and multiangular) and learning method trained for one situation is difficult to use for others. The key problem is how to simultaneously tackle three main problems: spectral drift, spatial deformation, and band inconsistency. To deal with these problems, we propose an unsupervised tensorized principal component alignment framework in this paper. In this framework, local spatial–spectral patch data are used as basic units in order to achieve simultaneously multidimensional alignment. This framework seeks a domain-invariant tensor feature space by learning multilinear mapping functions which align the source tensor subspace with the target tensor subspace on different dimensions. In addition, an approach based on the Mahalanobis distance for dimensionality estimation of tensor subspace is proposed to determine best sizes of the aligned tensor subspace for reducing computational complexity. HR images from GF-1, GF-2, DEIMOS-2, WorldView-2, and WorldView-3 satellites are used to evaluate the performance. The experimental results show the following two points: first, the proposed alignment framework for multimodal HR images not only can align the different multimodal data more accurately than existing state-of-the-art domain adaptation methods, but also has a fast and simple procedure for large-scale data situation which is caused by HR imaging. Second, the proposed tensor dimensionality estimation method is an efficient technology for seeking the intrinsic dimensions of high-order data.
机译:高分辨率(HR)遥感(RS)成像为进行非常精确的对象几何分析打开了方便之门。但是,在实际应用中很难同时使用大量的HR RS图像,因为这些HR图像通常是在不同的多模式条件(多源,多区域,多时间,多分辨率和多角度)下收集的,并且针对一种情况训练的学习方法很难使用为他人。关键问题是如何同时解决三个主要问题:频谱​​漂移,空间变形和谱带不一致。为了解决这些问题,本文提出了一种无监督的张量主成分对齐框架。在此框架中,局部空间光谱补丁数据被用作基本单位,以便同时实现多维对齐。该框架通过学习多线性映射函数来寻找域不变张量特征空间,该函数将源张量子空间与目标张量子空间在不同维度上对齐。此外,提出了一种基于马哈拉诺比斯距离的张量子空间维数估计方法,以确定对齐的张量子空间的最佳大小,以降低计算复杂度。来自GF-1,GF-2,DEIMOS-2,WorldView-2和WorldView-3卫星的HR图像用于评估性能。实验结果表明以下两点:首先,所提出的多模态HR图像对齐框架不仅可以比现有的最新领域自适应方法更准确地对齐不同的多模态数据,而且具有快速简单的过程对于由HR成像引起的大规模数据情况。其次,提出的张量维数估计方法是一种用于寻找高阶数据固有维数的有效技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号