首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery
【24h】

Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery

机译:通过循环卷积神经网络学习光谱-时空特征以在多光谱图像中进行变化检测

获取原文
获取原文并翻译 | 示例

摘要

Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network and a recurrent neural network into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependence in bitemporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) it is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; and 3) it is capable of adaptively learning the temporal dependence between multitemporal images, unlike most of the algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analyses of the experimental results demonstrate competitive performance in the proposed mode.
机译:变化探测是地球观测中的核心问题之一,近几十年来进行了广泛的研究。在本文中,我们提出了一种新颖的递归卷积神经网络(ReCNN)体系结构,该体系结构经过训练以在统一框架中学习联合的光谱-时空特征表示,以便在多光谱图像中进行变化检测。为此,我们将卷积神经网络和递归神经网络整合为一个端到端网络。前者能够生成丰富的光谱空间特征表示,而后者能够有效地分析位时图像中的时间依赖性。与以前的变更检测方法相比,所提出的网络体系结构具有三个独特的特性:1)与大多数现有方法的组件分别训练或计算相比,它是端对端可训练的; 2)它自然地利用了已被证明对改变检测任务有益的空间信息;和3)它能够自适应地学习多时间图像之间的时间相关性,这与大多数使用相当简单的操作(例如图像差分或叠加)的算法不同。据我们所知,这是首次提出循环卷积网络体系结构用于多时相遥感影像分析。所提出的网络在真实的多光谱数据集上得到了验证。实验结果的视觉和定量分析都证明了在建议模式下的竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号