首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Multispectral Change Detection With Bilinear Convolutional Neural Networks
【24h】

Multispectral Change Detection With Bilinear Convolutional Neural Networks

机译:用双线性卷积神经网络进行多光谱变化检测

获取原文
获取原文并翻译 | 示例

摘要

Recently, deep learning has been demonstrated to be an effective tool to detect changes in bitemporal remote sensing images. However, most existing methods based on deep learning obtain the ultimate change map by analyzing the difference image (DI) or the stacked feature vectors of input images, which cannot sufficiently capture the relationship between the two input images to obtain the change information. In this letter, a new method named bilinear convolutional neural networks (BCNNs) is proposed to detect changes in bitemporal multispectral images. The model can be trained end to end with two symmetric convolutional neural networks (CNNs), which are capable of learning the feature representation from bitemporal images and utilizing the relations between the two input images by a linear outer product operation in an effective way. Specifically, two sets of patches obtained from two multispectral images of different times are first input into two CNNs to extract deep features, respectively. Then, the matrix outer product is applied on the output feature maps to obtain the combined bilinear features. Finally, the ultimate change detected result can be produced by applying the softmax classifier on the combined features. Experimental results on real multispectral data sets demonstrate the superiority of the proposed method over several well-known change-detection approaches.
机译:最近,已经证明了深度学习是一种检测偏心遥感图像的变化的有效工具。然而,基于深度学习的大多数现有方法通过分析输入图像的差异图像(DI)或堆叠特征向量来获得最终变化图,这不能充分捕获两个输入图像之间的关系以获得改变信息。在这封信中,提出了一种名为Bilinear卷积神经网络(BCNN)的新方法,以检测衡量标准多光谱图像的变化。该模型可以训练结束以结束两个对称卷积神经网络(CNNS),其能够从比特仪图像中学习特征表示,并利用以有效的方式通过线性外部产品操作来利用两个输入图像之间的关系。具体地,从不同时间的两个多光谱图像获得的两组贴片是首先输入两个CNN以分别提取深度特征。然后,矩阵外部产品应用于输出特征图以获得组合的双线性特征。最后,可以通过在组合特征上应用Softmax分类器来产生最终变化的结果。真实多光谱数据集的实验结果证明了在几种众所周知的改变检测方法中提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号