首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Applying Upstream Satellite Signals and a 2-D Error Minimization Algorithm to Advance Early Warning and Management of Flood Water Levels and River Discharge
【24h】

Applying Upstream Satellite Signals and a 2-D Error Minimization Algorithm to Advance Early Warning and Management of Flood Water Levels and River Discharge

机译:应用上游卫星信号和二维误差最小化算法进行洪水水位和河流流量的预警和管理

获取原文
获取原文并翻译 | 示例

摘要

Recent studies demonstrate the power of applying satellite imagery in combination with artificial intelligence (AI) methods to advance the accuracy of forecasting ungauged river network water levels and discharge for early flood warning and management. In predicting river water levels and discharge time series, one of the most common sources of error with AI forecasting algorithms is the input imitation defect. When the input imitation defect occurs, regression methods simply present the input variables as output. In this paper, the input imitation defect is minimized by first introducing the two concepts of vertical error and horizontal error. Subsequently, upstream imagery information is combined with previous lags to propose a new procedure for predicting future satellite signals accurately and with the lowest possible input imitation defect. To accomplish this, the brightness temperature received by the Advanced Microwave Scanning Radiometer is used as a proxy of river discharge. The proposed method (PM) is finally compared with the simple linear regression and three well-known AI methods, i.e., multilayer perceptron, extreme learning machines, and radial basis function. The study outcome indicates that the PM results are more trustworthy and realistic.
机译:最近的研究表明,结合使用卫星图像和人工智能(AI)方法,可以提高预测未引水河网水位和流量的准确性,以进行早期洪水预警和管理。在预测河流水位和排放时间序列时,AI预测算法最常见的误差来源之一是输入仿制缺陷。当出现输入模仿缺陷时,回归方法仅将输入变量呈现为输出。在本文中,通过首先介绍垂直误差和水平误差这两个概念,将输入模仿缺陷最小化。随后,将上游图像信息与先前的滞后相结合,以提出一种新的过程,以准确地预测未来的卫星信号,并尽可能降低输入仿制缺陷。为此,将高级微波扫描辐射计接收到的亮度温度用作河流排放的代理。最后将所提出的方法(PM)与简单的线性回归和三种著名的AI方法(即多层感知器,极限学习机和径向基函数)进行比较。研究结果表明,PM结果更加可信和现实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号