首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Hypergraph $p$ -Laplacian Regularization for Remotely Sensed Image Recognition
【24h】

Hypergraph $p$ -Laplacian Regularization for Remotely Sensed Image Recognition

机译:Hypergraph $ p $ -拉普拉斯正则化用于遥感图像识别

获取原文
获取原文并翻译 | 示例

摘要

Graph-based and manifold-regularization (MR)-based semisupervised learning, including Laplacian regularization (LapR) and hypergraph LapR (HLapR), have achieved prominent performance in preserving locality and similarity information. However, it is still a great challenge to exactly explore and exploit the local structure of the data distribution. In this paper, we present an efficient and effective approximation algorithm of hypergraph p-Laplacian and then propose hypergraph p-LapR (HpLapR) to preserve the geometry of the probability distribution. In particular, hypergraph is a generalization of a standard graph while hypergraph p-Laplacian is a nonlinear generalization of the standard graph Laplacian. The proposed HpLapR shows great potential to exploit the local structures. We integrate HpLapR with logistic regression for remote sensing image recognition. Experiments on UC-Merced data set demonstrate that the proposed HpLapR has superior performance compared with several popular MR methods including LapR and HLapR.
机译:基于图和基于流形正则化(MR)的半监督学习(包括Laplacian正则化(LapR)和超图LapR(HLapR))在保存局部性和相似性信息方面取得了显著成绩。但是,准确地探索和利用数据分布的本地结构仍然是一个巨大的挑战。在本文中,我们提出了一种有效且有效的超图p-Laplacian逼近算法,然后提出了超图p-LapR(HpLapR)以保持概率分布的几何形状。特别地,超图是标准图的一般化,而超图p-Laplacian是标准图拉普拉斯的非线性一般化。提出的HpLapR具有开发本地结构的巨大潜力。我们将HpLapR与Logistic回归集成在一起,用于遥感图像识别。在UC-Merced数据集上进行的实验表明,与包括LapR和HLapR在内的几种流行的MR方法相比,提出的HpLapR具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号