首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Reservoir Lithology Determination by Hidden Markov Random Fields Based on a Gaussian Mixture Model
【24h】

Reservoir Lithology Determination by Hidden Markov Random Fields Based on a Gaussian Mixture Model

机译:基于高斯混合模型的隐马尔可夫随机场确定储层岩性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, geological prior information is incorporated in the classification of reservoir lithologies after the adoption of Markov random fields (MRFs). The prediction of hidden lithologies is based on measured observations, such as seismic inversion results, which are associated with the latent categorical variables, based on the assumption of Gaussian distributions. Compared with other statistical methods, such as the Gaussian mixture model or k-Means, which do not take spatial relationships into account, the hidden MRFs approach can connect the same or similar lithologies horizontally while ensuring a geologically reasonable vertical ordering. It is, therefore, able to exclude randomly appearing lithologies caused by errors in the inversion. The prior information consists of a Gibbs distribution function and transition probability matrices. The Gibbs distribution connects the same or similar lithologies internally, which does not need a geological definition from the outside. The transition matrices provide preferential transitions between different lithologies, and an estimation of them implicitly depends on the depositional environments and juxtaposition rules between different lithologies. Analog cross sections from the subsurface or outcrop studies can contribute to the construction of these matrices by a simple counting procedure.
机译:在本文中,采用马尔可夫随机场(MRF)后,将地质先验信息纳入储层岩性分类中。隐伏岩性的预测基于高斯分布的假设,并根据实测观测值(例如地震反演结果)与潜在分类变量相关联。与不考虑空间关系的其他统计方法(例如高斯混合模型或k-Means)相比,隐藏的MRF方法可以水平连接相同或相似的岩性,同时确保地质上合理的垂直排序。因此,它能够排除由反演中的错误引起的随机出现的岩性。先验信息包括吉布斯分布函数和转移概率矩阵。吉布斯分布在内部连接相同或相似的岩性,不需要从外部进行地质定义。转移矩阵提供了不同岩性之间的优先转移,对它们的估计隐含地取决于沉积环境和不同岩性之间的并置规则。来自地下或露头研究的模拟横截面可通过简单的计数程序帮助构造这些基质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号