首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Rule-base structure identification in an adaptive-network-based fuzzy inference system
【24h】

Rule-base structure identification in an adaptive-network-based fuzzy inference system

机译:基于自适应网络的模糊推理系统中基于规则的结构识别

获取原文
获取原文并翻译 | 示例

摘要

We summarize Jang's architecture of employing an adaptive network and the Kalman filtering algorithm to identify the system parameters. Given a surface structure, the adaptively adjusted inference system performs well on a number of interpolation problems. We generalize Jang's basic model so that it can be used to solve classification problems by employing parameterized t-norms. We also enhance the model to include weights of importance so that feature selection becomes a component of the modeling scheme. Next, we discuss two ways of identifying system structures based on Jang's architecture: the top-down approach, and the bottom-up approach. We introduce a data structure, called a fuzzy binary boxtree, to organize rules so that the rule base can be matched against input signals with logarithmic efficiency. To preserve the advantage of parallel processing assumed in fuzzy rule-based inference systems, we give a parallel algorithm for pattern matching with a linear speedup. Moreover, as we consider the communication and storage cost of an interpolation model. We propose a rule combination mechanism to build a simplified version of the original rule base according to a given focus set. This scheme can be used in various situations of pattern representation or data compression, such as in image coding or in hierarchical pattern recognition.
机译:我们总结了Jang使用自适应网络和Kalman滤波算法来识别系统参数的体系结构。给定一个表面结构,自适应调整的推理系统在许多插值问题上表现良好。我们推广了Jang的基本模型,以便可以通过使用参数化t范数来解决分类问题。我们还增强了模型以包括重要性权重,以使特征选择成为建模方案的组成部分。接下来,我们讨论基于Jang的体系结构识别系统结构的两种方法:自上而下的方法和自下而上的方法。我们引入了一种称为模糊二进制Boxtree的数据结构来组织规则,以便可以以对数效率将规则库与输入信号进行匹配。为了保留在基于模糊规则的推理系统中假设的并行处理的优势,我们提供了一种用于线性匹配模式匹配的并行算法。此外,在考虑插值模型的通信和存储成本时。我们提出了一种规则组合机制,可以根据给定的焦点集来构建原始规则库的简化版本。此方案可用于模式表示或数据压缩的各种情况,例如图像编码或分层模式识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号