首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Traffic modeling, prediction, and congestion control for high-speed networks: a fuzzy AR approach
【24h】

Traffic modeling, prediction, and congestion control for high-speed networks: a fuzzy AR approach

机译:高速网络的流量建模,预测和拥塞控制:模糊AR方法

获取原文
获取原文并翻译 | 示例

摘要

In this study, a fuzzy autoregressive (fuzzy-AR) model is proposed to describe the traffic characteristics of high-speed networks. The fuzzy-AR model approximates a nonlinear time-variant process with a combination of several linear local AR processes using a fuzzy clustering method. We propose that the use of this fuzzy-AR model has greater potential for congestion control of packet network traffic. The parameter estimation problem in fuzzy-AR modeling is treated by a clustering algorithm developed from actual traffic data in high-speed networks. Based on the adaptive AR-prediction model and queueing theory, a simple congestion control scheme is proposed to provide an efficient traffic management for high-speed networks. Finally, using the actual Ethernet-LAN packet traffic data, several examples are given to demonstrate the validity of this proposed method for high-speed network traffic control.
机译:在这项研究中,提出了一种模糊自回归(模糊-AR)模型来描述高速网络的流量特性。 Fuzzy-AR模型使用模糊聚类方法通过结合几个线性局部AR过程来近似非线性时变过程。我们建议使用这种模糊AR模型具有更大的潜力来控制分组网络流量。通过从高速网络中的实际交通数据中开发出一种聚类算法,可以处理模糊AR模型中的参数估计问题。基于自适应AR预测模型和排队理论,提出一种简单的拥塞控制方案,为高速网络提供有效的流量管理。最后,使用实际的以太网-LAN数据包流量数据,给出了几个示例,以证明该方法对高速网络流量控制的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号