首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy neural networks-based quality prediction system for sintering process
【24h】

Fuzzy neural networks-based quality prediction system for sintering process

机译:基于模糊神经网络的烧结过程质量预测系统

获取原文
获取原文并翻译 | 示例

摘要

A hybrid fuzzy neural networks and genetic algorithm (GA) system is proposed to solve the difficult and challenging problem of constructing a system model from the given input and output data to predict the quality of chemical components of the finished sintering mineral. A bidirectional fuzzy neural network (BFNN) is proposed to represent the fuzzy model and realize the fuzzy inference. The learning process of BFNN is divided into off-line and online learning. In off-line learning, the GA is used to train the BFNN and construct a system model based on the training data. During online operation, the algorithm inherited from the principle of backpropagation is used to adjust the network parameters and improve the system precision in each sampling period. The process of constructing a system model is introduced in details. The results obtained from the actual prediction demonstrate that the performance and capability of the proposed system are superior.
机译:提出了一种混合模糊神经网络与遗传算法(GA)系统,以解决从给定的输入和输出数据构建系统模型来预测烧结矿矿物化学成分质量的难题。提出了一种双向模糊神经网络(BFNN)来表示模糊模型并实现模糊推理。 BFNN的学习过程分为离线学习和在线学习。在离线学习中,遗传算法用于训练BFNN,并基于训练数据构建系统模型。在线操作过程中,继承了反向传播原理的算法用于调整网络参数,提高每个采样周期的系统精度。详细介绍了构建系统模型的过程。从实际预测中获得的结果表明,所提出的系统的性能和功能是优越的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号