首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy Querying of Incomplete, Imprecise, and Heterogeneously Structured Data in the Relational Model Using Ontologies and Rules
【24h】

Fuzzy Querying of Incomplete, Imprecise, and Heterogeneously Structured Data in the Relational Model Using Ontologies and Rules

机译:使用本体和规则对关系模型中的不完整,不精确和异构结构数据进行模糊查询

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new method, called multiview fuzzy querying, which permits to query incomplete, imprecise and heterogeneously structured data stored in a relational database. This method has been implemented in the MIEL software. MIEL is used to query the Sym'Previus database which gathers information about the behavior of pathogenic germs in food products. In this database, data are incomplete because information about all possible food products and all possible germs is not available; data are heterogeneous because they come from various sources (scientific bibliography, industrial data, etc); data may be imprecise because of the complexity of the underlying biological processes that are involved. To deal with heterogeneity, MIEL queries the database through several views simultaneously. To query incomplete data, MIEL proposes to use a fuzzy set, expressing the query preferences of the user. Fuzzy sets may be defined on a hierarchized domain of values, called an ontology (values of the domain are connected using the a kind of semantic link). MIEL also proposes two optional functionalities to help the user query the database: i) MIEL can use the ontology to enlarge the querying in order to retrieve the nearest data corresponding to the selection criteria; and ii) MIEL proposes fuzzy completion rules to help the user formulate his/her query. To query imprecise data stored in the database with fuzzy selection criteria, MIEL uses fuzzy pattern matching.
机译:在本文中,我们提出了一种称为多视图模糊查询的新方法,该方法允许查询关系数据库中存储的不完整,不精确和异构结构的数据。该方法已在MIEL软件中实现。 MIEL用于查询Sym'Previus数据库,该数据库收集有关食品中病原菌行为的信息。在该数据库中,数据不完整,因为没有有关所有可能的食品和所有可能的细菌的信息;数据是异构的,因为它们来自各种来源(科学参考书目,工业数据等);由于涉及的基础生物学过程的复杂性,数据可能不准确。为了处理异构性,MIEL同时通过多个视图查询数据库。为了查询不完整的数据,MIEL建议使用模糊集来表达用户的查询首选项。可以在称为本体的值的分层域上定义模糊集(域的值使用一种语义链接进行连接)。 MIEL还提出了两个可选功能来帮助用户查询数据库:i)MIEL可以使用本体来扩大查询范围,以便检索与选择标准相对应的最近数据; ii)MIEL提出了模糊完成规则,以帮助用户制定他/她的查询。为了使用模糊选择标准查询存储在数据库中的不精确数据,MIEL使用模糊模式匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号