首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Interval Regression Analysis Using Quadratic Loss Support Vector Machine
【24h】

Interval Regression Analysis Using Quadratic Loss Support Vector Machine

机译:基于二次损失支持向量机的区间回归分析

获取原文
获取原文并翻译 | 示例

摘要

Support vector machines (SVMs) have been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a hew method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of quadratic loss SVM. This version of SVM utilizes quadratic loss function, unlike the traditional SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. The quadratic loss SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property in fuzzy regression. However, this is not a computationally expensive way. The quadratic loss SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. The proposed algorithm is a very attractive approach to modeling nonlinear interval data, and is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.
机译:支持向量机(SVM)在针对清晰数据的模式识别和功能估计问题方面非常成功。本文提出了一种用概率和必要性估计公式结合二次损失支持向量机原理的区间估计线性和非线性回归模型的方法。与传统的SVM不同,此版本的SVM利用二次损失功能。对于具有清晰输入和间隔输出的数据集,最近已使用了可能性和必要性模型,该模型基于二次编程方法,与线性编程相比,该模型提供了更多的扩展系数。二次损失支持向量机也使用二次规划方法,其在区间回归分析中的另一个优势是能够将最小二乘的集中趋势特性和模糊回归的可能特性整合在一起。但是,这不是计算上昂贵的方法。二次损失SVM允许我们通过在高维特征空间中构造区间线性回归函数来执行区间非线性回归分析。所提出的算法是一种非常有吸引力的建模非线性区间数据的方法,并且在无需为具有清晰输入和区间输出的区间非线性回归模型假设基础模型函数的意义上,它是一种无模型的方法。实验结果表明了该算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号