首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Stabilizing and Tracking Control of Nonlinear Dual-Axis Inverted-Pendulum System Using Fuzzy Neural Network
【24h】

Stabilizing and Tracking Control of Nonlinear Dual-Axis Inverted-Pendulum System Using Fuzzy Neural Network

机译:基于模糊神经网络的非线性双轴倒摆系统的稳定与跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

Since the dynamic characteristics of a nonlinear inverted-pendulum mechanism are highly nonlinear, it is difficult to design a suitable control system that realizes real time stabilization and accurate tracking control at all time. In this study, a robust fuzzy-neural-network (FNN) control system is implemented to control a dual-axis inverted-pendulum mechanism that is driven by permanent magnet (PM) synchronous motors. The energy conservation principle is adopted to build a mathematical model of the motor-mechanism-coupled system. Moreover, a robust FNN control system is developed for stabilizing and tracking control of the dual-axis inverted-pendulum system. In this control system, a FNN controller is used to learn an equivalent control law as in the traditional sliding-mode control, and a robust controller is designed to ensure the near total sliding motion through the entire state trajectory without a reaching phase. The salient advantages of this FNN-based control scheme are as follows. 1) It does not require a perfect knowledge of system uncertainties so that this brings a high level of autonomy to the overall system and make the use of this control scheme very attractive for real time applications. 2) All adaptive learning algorithms in this control system are derived in the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. 3) Not only the weight vector in the rule-to-output layer are adjusted on line but also the mean and the standard deviation of Gaussian functions in the membership function layer. This training scheme will increase the learning capability of the FNN. 4) An adaptive bound estimation algorithm is investigated to relax the requirement for the bound of uncertain term including the minimum reconstructed error, higher-order term in Taylor series, and network parameters approximation error. The effectiveness of the proposed control strategy can be verified by numerical simulation and experimental results.
机译:由于非线性倒立摆机构的动态特性是高度非线性的,因此难以设计合适的控制系统来始终实现实时稳定和精确的跟踪控制。在这项研究中,实现了鲁棒的模糊神经网络(FNN)控制系统来控制由永磁(PM)同步电动机驱动的双轴倒立摆机构。采用节能原理建立了电机-机械耦合系统的数学模型。此外,开发了鲁棒的FNN控制系统,用于稳定和跟踪双轴倒立摆系统的控制。在此控制系统中,FNN控制器用于学习与传统滑模控制相同的控制规律,而鲁棒控制器则设计为确保在整个状态轨迹中几乎达到总的滑动运动而没有到达相位。这种基于FNN的控制方案的显着优势如下。 1)它不需要对系统不确定性有全面的了解,因此这给整个系统带来了高度的自治性,并使这种控制方案对于实时应用非常有吸引力。 2)从Lyapunov稳定性分析的意义上推导了该控制系统中的所有自适应学习算法,从而可以确保闭环系统中的系统跟踪稳定性。 3)不仅在线调整了规则到输出层的权向量,而且隶属函数层的高斯函数的均值和标准差也被调整。该培训方案将提高FNN的学习能力。 4)研究了一种自适应边界估计算法,以放宽对不确定项边界的要求,包括最小重构误差,泰勒级数中的高阶项以及网络参数逼近误差。数值仿真和实验结果可以验证所提出控制策略的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号