首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Automatic Design of Hierarchical Takagi–Sugeno Type Fuzzy Systems Using Evolutionary Algorithms
【24h】

Automatic Design of Hierarchical Takagi–Sugeno Type Fuzzy Systems Using Evolutionary Algorithms

机译:基于进化算法的分层高木-杉野式模糊系统自动设计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an automatic way of evolving hierarchical Takagi–Sugeno fuzzy systems (TS-FS). The hierarchical structure is evolved using probabilistic incremental program evolution (PIPE) with specific instructions. The fine tuning of the if–then rule''s parameters encoded in the structure is accomplished using evolutionary programming (EP). The proposed method interleaves both PIPE and EP optimizations. Starting with random structures and rules'' parameters, it first tries to improve the hierarchical structure and then as soon as an improved structure is found, it further fine tunes the rules'' parameters. It then goes back to improve the structure and the rules'' parameters. This loop continues until a satisfactory solution (hierarchical TS-FS model) is found or a time limit is reached. The proposed hierarchical TS-FS is evaluated using some well known benchmark applications namely identification of nonlinear systems, prediction of the Mackey–Glass chaotic time-series and some classification problems. When compared to other neural networks and fuzzy systems, the developed hierarchical TS-FS exhibits competing results with high accuracy and smaller size of hierarchical architecture.
机译:本文提出了一种演化的自动分层Takagi-Sugeno模糊系统(TS-FS)的方法。使用具有特定指令的概率增量程序演化(PIPE)来演化层次结构。使用演化编程(EP)对结构中编码的if-then规则参数进行微调。所提出的方法交错了PIPE和EP优化。从随机结构和规则的参数开始,它首先尝试改进层次结构,然后在找到改进的结构后立即对其进行微调。然后返回以改进结构和规则的参数。该循环一直持续到找到令人满意的解决方案(分层TS-FS模型)或达到时间限制为止。拟议的分层TS-FS使用一些众所周知的基准应用程序进行评估,即非线性系统的识别,Mackey-Glass混沌时间序列的预测以及一些分类问题。与其他神经网络和模糊系统相比,已开发的分层TS-FS以高精度和较小的分层体系结构展示了竞争性结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号