首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Speedup of Fuzzy Clustering Through Stream Processing on Graphics Processing Units
【24h】

Speedup of Fuzzy Clustering Through Stream Processing on Graphics Processing Units

机译:通过图形处理单元上的流处理加快模糊聚类的速度

获取原文
获取原文并翻译 | 示例

摘要

As the number of data points, feature dimensionality, and number of centers for clustering algorithms increase, computational tractability becomes a problem. The fuzzy c-means has a large degree of inherent algorithmic parallelism that modern CPU architectures do not exploit. Many pattern recognition algorithms can be sped up on a graphics processing unit (GPU) as long as the majority of computation at various stages and the components are not dependent on each other. We present a generalized method for offloading fuzzy clustering to a GPU, while maintaining control over the number of data points, feature dimensionality, and the number of cluster centers. GPU-based clustering is a high-performance low-cost solution that frees up the CPU. Our results show a speed increase of over two orders of magnitude for particular clustering configurations and platforms.
机译:随着数据点的数量,特征维数和用于聚类算法的中心数量的增加,计算可处理性成为问题。模糊c均值具有现代CPU架构无法利用的很大程度的固有算法并行性。只要在不同阶段进行的大部分计算以及各个组件之间彼此不依赖,就可以在图形处理单元(GPU)上加快许多模式识别算法的速度。我们提出了一种将模糊聚类卸载到GPU的通用方法,同时保持了对数据点数量,特征维数和聚类中心数量的控制。基于GPU的群集是一种高性能的低成本解决方案,可释放CPU。我们的结果表明,特定集群配置和平台的速度提高了两个数量级以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号