首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Speedup of Learning in Interval Type-2 Neural Fuzzy Systems Through Graphic Processing Units
【24h】

Speedup of Learning in Interval Type-2 Neural Fuzzy Systems Through Graphic Processing Units

机译:通过图形处理单元加快间隔2型神经模糊系统的学习速度

获取原文
获取原文并翻译 | 示例

摘要

In contrast with type-1 neural fuzzy systems (NFSs), interval type-2 NFSs process interval membership values are much more computationally expensive in implementation, especially for large-scale problems. Interval type-2 NFSs are conventionally implemented on a single-threaded central processing unit (CPU) with serially processed computation for each input variable and fuzzy rule. Because graphics processing units (GPUs) have many cores that can collectively run many threads in parallel, this paper proposes the implementation of interval type-2 NFSs through the parallel processing on GPUs (IT2NFS-GPU) to reduce the system training time. The structure in the IT2NFS-GPU is built through an online learning approach that is based on rule-firing strength. Parameters in the T2NFS-GPU are tuned using the well-known gradient descent algorithm; therefore, it is easier for users to follow the GPU implementation techniques. In the IT2NFS-GPU, for the parallel computation of the structure and parameter learning algorithms, blocks of threads are partitioned according to the parallel and independent properties of interval boundaries, input variables, and fuzzy rules. Specifically, the IT2NFS-GPU implements the type-reduction operation through the parallel computation of all possible system outputs instead of the traditional iterative procedure. The IT2NFS-GPU is applied to several data-driven learning problems to verify its shorter computing times.
机译:与类型1神经模糊系统(NFS)相比,间隔类型2 NFS处理间隔隶属度值在实现上的计算量大得多,尤其是对于大规模问题。间隔类型2 NFS通常在单线程中央处理单元(CPU)上实现,并对每个输入变量和模糊规则进行串行处理。由于图形处理单元(GPU)具有许多内核,这些内核可以共同并行运行多个线程,因此,本文提出了通过在GPU(IT2NFS-GPU)上进行并行处理来实现间隔类型2 NFS的实现,以减少系统训练时间。 IT2NFS-GPU中的结构是通过基于规则激发强度的在线学习方法构建的。 T2NFS-GPU中的参数使用众所周知的梯度下降算法进行调整;因此,用户可以更轻松地遵循GPU实现技术。在IT2NFS-GPU中,为了并行计算结构和参数学习算法,根据区间边界,输入变量和模糊规则的并行和独立属性对线程块进行分区。具体来说,IT2NFS-GPU通过并行计算所有可能的系统输出而不是传统的迭代过程来实现类型缩减操作。 IT2NFS-GPU已应用于多个数据驱动的学习问题,以验证其较短的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号