首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Artificial Neural Networks are Zero-Order TSK Fuzzy Systems
【24h】

Artificial Neural Networks are Zero-Order TSK Fuzzy Systems

机译:人工神经网络是零阶TSK模糊系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the functional equivalence between the action of a multilayered feed-forward artificial neural network (NN) and the performance of a system based on zero-order TSK fuzzy rules is proven. The resulting zero-order TSK fuzzy systems have the two following features: (A) the product t-norm is used to add IF-part fuzzy propositions of the obtained rules and (B) their inputs are the same as the initial neural networkNN ones. This fact makes us gain an understanding of the ANN-embedded knowledge. Besides, it allows us to simplify the architecture of a network through the reduction of fuzzy propositions in its equivalent zero-order TSK system. These advantages are the result of applying fuzzy system area properties on the neural networkNN area. They are illustrated with several examples.
机译:本文证明了多层前馈人工神经网络(NN)的作用与基于零阶TSK模糊规则的系统性能之间的功能等效性。产生的零阶TSK模糊系统具有以下两个特征:(A)乘积t范数用于添加所获得规则的IF部分模糊命题,并且(B)其输入与初始神经网络NN相同。这一事实使我们对ANN嵌入的知识有了了解。此外,它允许我们通过减少等效零阶TSK系统中的模糊命题来简化网络的体系结构。这些优点是在神经网络NN区域上应用模糊系统区域属性的结果。它们用几个例子说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号