首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >An Interval Type-2 Fuzzy-Neural Network With Support-Vector Regression for Noisy Regression Problems
【24h】

An Interval Type-2 Fuzzy-Neural Network With Support-Vector Regression for Noisy Regression Problems

机译:支持向量回归的带噪声向量回归的区间2型模糊神经网络

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an interval type-2 fuzzy-neural network with support-vector regression (IT2FNN-SVR) for noisy regression problems. The antecedent part in each fuzzy rule of an IT2FNN-SVR uses interval type-2 fuzzy sets, and the consequent part is of the Takagi–Sugeno–Kang (TSK) type. The use of interval type-2 fuzzy sets helps improve the network''s noise resistance. The network inputs may be numerical values or type-1 fuzzy sets, with the latter being used for further improvements in robustness. IT2FNN-SVR learning consists of both structure learning and parameter learning. The structure-learning algorithm is responsible for online rule generation. The parameters are optimized for structural-risk minimization using a two-phase linear SVR algorithm in order to endow the network with high generalization ability. IT2FNN-SVR performance is verified through comparisons with type-1 and type-2 fuzzy-logic systems and other regression models on noisy regression problems.
机译:针对噪声回归问题,提出了一种带支持向量回归的区间2型模糊神经网络(IT2FNN-SVR)。 IT2FNN-SVR的每个模糊规则的前一部分使用区间2型模糊集,其后部分是Takagi–Sugeno–Kang(TSK)类型。间隔类型2模糊集的使用有助于提高网络的抗噪性。网络输入可以是数值或1型模糊集,后者用于进一步提高鲁棒性。 IT2FNN-SVR学习包括结构学习和参数学习。结构学习算法负责在线规则的生成。为了使网络具有较高的泛化能力,使用两阶段线性SVR算法对参数进行了优化以最小化结构风险。通过与1型和2型模糊逻辑系统以及其他关于噪声回归问题的回归模型进行比较,验证了IT2FNN-SVR的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号