首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Genetic Training Instance Selection in Multiobjective Evolutionary Fuzzy Systems: A Coevolutionary Approach
【24h】

Genetic Training Instance Selection in Multiobjective Evolutionary Fuzzy Systems: A Coevolutionary Approach

机译:多目标进化模糊系统中的遗传训练实例选择:一种协同进化方法

获取原文
获取原文并翻译 | 示例

摘要

When dealing with datasets that are characterized by a large number of instances, multiobjective evolutionary learning (MOEL) of fuzzy rule-based systems (FRBSs) suffers from high computational costs, mainly because of the fitness evaluation. The use of a reduced set of representative instances in place of the overall training set (TS) would considerably lessen the computational effort. Even though a large number of papers have proposed instance selection approaches, mainly in classification problems, how this selection should be performed, especially in the context of regression, is still an open issue. In this paper, we tackle the instance selection problem in the framework of MOEL of FRBSs through a coevolutionary approach. In the execution of the MOEL, periodically, a single-objective genetic algorithm (SOGA) evolves a population of reduced TSs. The SOGA aims to maximize a purposely defined index which measures how much the Pareto fronts computed by using, respectively, the reduced TS and the overall TS are close to each other: The closer the fronts, the more the reduced TS is representative of the overall TS. During the execution of the MOEL, the rule base and the membership function parameters of the fuzzy sets are concurrently learned by maximizing the accuracy and minimizing the complexity. We tested our approach on 12 large datasets. We adopted reduced TSs composed of 5%, 10%, and 20% of the overall TS. Using nonparametric statistical tests, we verified that with 10% and 20% of the overall TS, the Pareto front approximations that are generated by our coevolutionary approach are comparable with the ones generated by applying the MOEL with the overall TS, although the coevolution allows us to save up to 86.36% of the execution time. In addition, the analysis of the behavior of three representative solutions on the test set highlights that the use of the reduced TSs does not affect the generalization capabilities of the generated FRBSs.
机译:当处理以大量实例为特征的数据集时,基于模糊规则的系统(FRBS)的多目标进化学习(MOEL)受制于高计算成本,这主要是因为适应性评估。使用减少的代表性实例集代替整体训练集(TS)将大大减少计算量。尽管有很多论文提出了实例选择方法,主要是在分类问题中,但是如何进行这种选择,尤其是在回归的情况下,仍然是一个未解决的问题。在本文中,我们通过协同进化方法在FRBS的MOEL框架下解决实例选择问题。在执行MOEL时,周期性地,单目标遗传算法(SOGA)进化出大量减少的TS。 SOGA旨在最大化一个明确定义的指标,该指标衡量通过分别使用减少的TS和总体TS彼此接近而计算出的Pareto前沿多少:前沿越近,减少的TS代表整体的TS越多TS。在执行MOEL的过程中,通过最大程度地提高准确性和最小化复杂性来同时学习模糊集的规则库和隶属函数参数。我们在12个大型数据集上测试了我们的方法。我们采用了减少的TS,占总TS的5%,10%和20%。使用非参数统计检验,我们验证了在总TS的10%和20%的情况下,尽管通过协进化可以使我们的协进化方法生成的帕累托前逼近与通过将MOEL应用于总TS所生成的近似。最多可节省86.36%的执行时间。此外,对测试集上三个代表性解决方案的行为的分析强调,减少TS的使用不会影响所生成FRBS的泛化能力。

著录项

  • 来源
    《Fuzzy Systems, IEEE Transactions on》 |2012年第2期|p.276-290|共15页
  • 作者

    Antonelli M.;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号