首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Chaos-Based Fuzzy Regression Approach to Modeling Customer Satisfaction for Product Design
【24h】

Chaos-Based Fuzzy Regression Approach to Modeling Customer Satisfaction for Product Design

机译:基于混沌的模糊回归方法在产品设计中的客户满意度建模

获取原文
获取原文并翻译 | 示例

摘要

The success of a new product is very much related to the customer satisfaction level of the product. Therefore, it is important to estimate the customer satisfaction level of a new product in its design stage. Quality function deployment is commonly used to develop customer satisfaction models for product design. Relationships between customer satisfaction and design attributes are highly fuzzy and nonlinear, but these relationship characteristics cannot be captured by existing customer satisfaction models. In this paper, we propose a novel chaos-based fuzzy regression (FR) approach with which fuzzy customer satisfaction models with second- and/or higher order terms, and interaction terms can be developed. The proposed approach uses a chaos optimization algorithm to generate the polynomial structures of customer satisfaction models. Thereafter, it employs an FR method to determine the fuzzy coefficients of the individual terms of models. To illustrate and validate the proposed approach, it is applied in the development of a customer satisfaction model for a mobile phone design. Five validation tests are conducted to compare modeling results from the chaos-based FR with those from statistical regression, FR, and fuzzy least-squares regression. Results of the validation tests show that the proposed approach outperforms the other three approaches in terms of mean relative errors and variance of errors and customer satisfaction models with second- and/or higher order terms, and interaction terms can be developed effectively using the proposed chaos-based FR approach.
机译:新产品的成功与该产品的客户满意度密切相关。因此,重要的是在设计阶段评估新产品的客户满意度。质量功能部署通常用于开发产品设计的客户满意度模型。客户满意度和设计属性之间的关系是高度模糊和非线性的,但是现有的客户满意度模型无法捕获这些关系特征。在本文中,我们提出了一种新颖的基于混沌的模糊回归(FR)方法,利用该方法可以开发具有二阶和/或更高阶项以及交互项的模糊客户满意度模型。所提出的方法使用混沌优化算法来生成客户满意度模型的多项式结构。此后,它采用FR方法确定各个模型项的模糊系数。为了说明和验证所提出的方法,将其应用于手机设计的客户满意度模型的开发中。进行了五次验证测试,以比较基于混沌的FR与统计回归,FR和模糊最小二乘回归的建模结果。验证测试的结果表明,在平均相对误差和误差方差以及具有二阶和/或更高阶项的客户满意度模型方面,所提出的方法优于其他三种方法,并且可以使用所提出的混沌来有效地开发交互项基于FR的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号