首页> 外文期刊>IEEE Transactions on Fuzzy Systems >A Method for Deriving the Analytical Structure of a Broad Class of Typical Interval Type-2 Mamdani Fuzzy Controllers
【24h】

A Method for Deriving the Analytical Structure of a Broad Class of Typical Interval Type-2 Mamdani Fuzzy Controllers

机译:广义典型区间2型Mamdani模糊控制器的解析结构推导方法

获取原文
获取原文并翻译 | 示例

摘要

Type-2 (T2) fuzzy controllers are emerging as the related T2 fuzzy logic, and algorithms have recently been advancing rapidly. At present, a T2 fuzzy controller is viewed and used as a black-box function generator that produces a desired nonlinear mapping between the input and output of the controller (we call the mapping analytical structure). The mathematical expression of the analytical structure, however, is not explicitly known to the controller designer. This is in sharp contrast with the analytical structure of a conventional controller, which is not only always explicitly known, but serves as a starting point for system analysis and design. Obviously, the knowledge of a T2 fuzzy controller's analytical structure can have significant benefits. They include 1) understanding more precisely how the controller works in the same sense as we understand how a conventional controller (e.g., the PID controller) functions; 2) making T2 fuzzy control more acceptable to safety-critical fields such as biomedicine; 3) taking advantage of the well-developed nonlinear control theory to develop better analysis and design methods for T2 control systems (e.g., less conservative system stability criteria); and 4) permitting rigorous comparative exploration on differences between the T2 and type-1 (T1) fuzzy controllers and their relative merits and pitfalls (e.g., performance and structural complexity). In this paper, we develop an innovative technique which is capable of deriving the analytical structure for a wide class of interval T2 Mamdani fuzzy controllers. The configuration of the controllers is typical and is substantially more general than the related efforts in the literature. It uses any number and types of interval T2 input fuzzy sets, any number and types of general or interval T2 output fuzzy sets, arbitrary fuzzy rules, Zadeh and operator, Karnik–Mendel center-of-sets type reducer, and the centroid defuzzifier. We show in detail how the derivation- method works in a general setting and provide the analytical structure of an example T2 controller as well. In addition, we utilize the method to prove that a subset of the T2 fuzzy controllers are the sum of two nonlinear PI (or PD) controllers, each of which has a variable proportional gain and a variable integral gain (or derivative gain) plus a variable offset if and only if the input fuzzy sets are piecewise linear (e.g., triangular and/or trapezoidal). The sum of the two nonlinear PI (or PD) controllers is a new discovery relative to the current literature.
机译:类型2(T2)模糊控制器正逐渐成为相关的T2模糊逻辑,并且算法最近也在迅速发展。目前,人们将T2模糊控制器用作黑盒函数生成器,该函数在控制器的输入和输出之间生成所需的非线性映射(我们称为映射分析结构)。但是,控制器设计者并未明确知道解析结构的数学表达式。这与常规控制器的分析结构形成鲜明对比,常规控制器的分析结构不仅总是明确地知道,而且可以作为系统分析和设计的起点。显然,了解T2模糊控制器的分析结构可以带来很多好处。它们包括:1)更精确地了解控制器的工作原理,与我们了解常规控制器(例如PID控制器)的工作原理相同; 2)使T2模糊控制更受生物医学等安全关键领域的接受; 3)利用发达的非线性控制理论为T2控制系统开发更好的分析和设计方法(例如,保守度较低的系统稳定性标准);和4)可以对T2和类型1(T1)模糊控制器之间的差异以及它们的相对优缺点(例如,性能和结构复杂性)进行严格的比较研究。在本文中,我们开发了一种创新技术,该技术能够推导宽间隔T2 Mamdani模糊控制器的解析结构。控制器的配置是典型的,并且比文献中的相关工作更为通用。它使用任何数量和类型的间隔T2输入模糊集,任何数量和类型的常规T2或输出间隔模糊集,任意模糊规则,Zadeh和算子,Karnik–Mendel集中心类型归约器和质心解模糊器。我们将详细说明推导方法在一般情况下如何工作,并提供示例T2控制器的分析结构。此外,我们利用该方法证明T2模糊控制器的子集是两个非线性PI(或PD)控制器的总和,每个非线性PI控制器具有可变的比例增益和可变的积分增益(或导数增益)加上一个当且仅当输入模糊集为分段线性(例如,三角形和/或梯形)时,才使用变量偏移。相对于当前文献,两个非线性PI(或PD)控制器的总和是一个新发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号