首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Enhancing Multiclass Classification in FARC-HD Fuzzy Classifier: On the Synergy Between src='/images/tex/388.gif' alt='n'> -Dimensional Overlap Functions and Decomposition Strategies
【24h】

Enhancing Multiclass Classification in FARC-HD Fuzzy Classifier: On the Synergy Between src='/images/tex/388.gif' alt='n'> -Dimensional Overlap Functions and Decomposition Strategies

机译:在FARC-HD模糊分类器中增强多类分类: src =“ / images / tex / 388.gif” alt =“ n”> -维重叠函数和分解策略

获取原文
获取原文并翻译 | 示例

摘要

There are many real-world classification problems involving multiple classes, e.g., in bioinformatics, computer vision, or medicine. These problems are generally more difficult than their binary counterparts. In this scenario, decomposition strategies usually improve the performance of classifiers. Hence, in this paper, we aim to improve the behavior of fuzzy association rule-based classification model for high-dimensional problems (FARC-HD) fuzzy classifier in multiclass classification problems using decomposition strategies, and more specifically (OVO) and (OVA) strategies. However, when these strategies are applied on FARC-HD, a problem emerges due to the low-confidence values provided by the fuzzy reasoning method. This undesirable condition comes from the application of the product -norm when computing the matching and association degrees, obtaining low values, which are also dependent on the number of antecedents of the fuzzy rules. As a result, robust aggregation strategies in OVO, such as the weighted voting obtain poor results with this fuzzy classifier. In order to solve these problems, we propose to adapt the inference system of FARC-HD replacing the product -norm with . To do so, we define . The usage of these new functions allows one to obtain more adequate outputs from the base classifiers for the subsequent aggregation in OVO and OVA schemes. Furthermore, we propose a new aggregation strategy for OVO to deal with the problem of the weighted voting derived from the inappropriate confidences provided by FARC-HD for this aggregation method. The quality of our new approach is analyzed using 20 datasets and the conclusions are supported by a proper statistical analysis. In order to check the usefulness of our proposal, we carry out a comparison against some of the state-of-th- -art fuzzy classifiers. Experimental results show the competitiveness of our method.
机译:现实世界中存在许多涉及多个类别的分类问题,例如,在生物信息学,计算机视觉或医学中。这些问题通常比二进制问题更困难。在这种情况下,分解策略通常可以提高分类器的性能。因此,在本文中,我们旨在使用分解策略(尤其是(OVO)和(OVA)),针对多类分类问题中的高维问题(FARC-HD)模糊分类器,改进基于模糊关联规则的分类模型的行为策略。然而,当将这些策略应用于FARC-HD时,由于模糊推理方法提供的低置信度值而出现问题。这种不希望的条件来自在计算匹配度和关联度时获得乘积范数,从而获得了较低的值,该值也取决于模糊规则的先行数量。结果,使用此模糊分类器的OVO中的鲁棒聚合策略(如加权投票)获得的效果不佳。为了解决这些问题,我们建议改编FARC-HD的推理系统,用代替产品范数。为此,我们定义。这些新功能的使用使人们可以从基本分类器中获得更多适当的输出,以用于OVO和OVA方案中的后续聚合。此外,我们为OVO提出了一种新的聚合策略,以解决FARC-HD为此聚合方法提供的不当置信度得出的加权投票问题。我们使用20个数据集对新方法的质量进行了分析,结论得到了适当的统计分析的支持。为了检查我们的建议的有效性,我们对一些最新的模糊分类器进行了比较。实验结果表明了该方法的竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号